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Crystal Properties

3 categories of elements and their compounds

1. Amorphous

2. Polycrystalline

3. Single-crystalline

depends on their arrangement of atoms
in the material

When the atoms in the material are arranged in a regular manner with a 

three-dimensional periodicity that extends throughout a given volume of 

the solid, the material is considered to be a single crystal.

The periodic arrangement of atoms is interrupted randomly along two-

dimensional sections that can intersect, dividing a given volume of solid 

into a number of smaller single-crystalline regions or grains. (can be as 

small as several atomic spacings)

There is no periodicity in the arrangement of atoms (the periodicity is of the same 

size as the atomic spacings)
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Crystal Properties

3 categories of elements and their compounds

Schematic of the difference between 
(a) a single-crystalline, 
(b) a polycrystalline, and 
(c) an amorphous material.
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Why Single Crystal?

- Although semiconducting properties are observed in all three classes of solids, we will 

restrict our attention to semiconducting materials in single-crystalline form .

- Theoretically, when we consider that the spacing between nearest-neighbor atoms in a 

solid is typically several angstroms (lÅ = 10- 8 cm) , we find that there are 1022 to 1023

atoms per cubic centimeter. If this enormous number of atoms were arranged randomly in 

the material, it would be very difficult to construct a useful physical theory of  

semiconductor behavior.

- In single crystals , however, the theoretical problems are reduced to manageable size 

and we find that many of the important properties of solids are actually determined by the 

periodicity of the atoms. 

- Practically, the use of single crystals greatly simplifies a number of the processing steps 

(etching, diffusion, etc.) used in the fabrication of semiconductor devices and permits

the high device yields that are characteristic of modern integrated-circuit technology. 

-Also, charge carriers in single crystals exhibit properties that are very useful in device 

operations. 

- Thus, most useful semiconductor devices are fabricated with single-crystalline material.
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Assumption of Perfect Crystal

- In this chapter we consider in detail the crystal structures of the most important 

semiconductors. 

- The approach we take is to assume that the material is perfectly periodic with no 

deviations from its periodicity. This , of course, is an idealization since even a perfect single 

crystal must have surfaces, and some of the most useful physical properties of 

semiconductors are obtained by introducing defects into the crystal structure (              ). 

- It is, therefore, worthwhile to examine the assumption of perfect periodicity. 

- Considering the surface atoms, if the material has 1023 atoms in a centimeter cube, only 

about 1 atom in 108 is on the surface. 

- In many applications, intentionally added impurities produce the dominant deviation from 

perfect periodicity. Typically, this doping would result in at most 1 impurity atom in 103. 

-Thus, in most instances, it is reasonable initially to treat the material analytically as a 

perfect crystalline structure and later to introduce small perturbations to account for 

deviations from periodicity. 

- We consider such perturbations in Chapter 3.

doping
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Simple Lattice

- Although no semiconductors crystallize into simple lattices, they form the basis for 

understanding the more complicated semiconductor structures. We will use them to 

illustrate some of the more important concepts involved in forming a mathematical 

description of the crystal lattice (see the following Figure).

(a) Simple cubic (b) body-centered cubic (c) face-centered cubic 

structures.
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Bravais Lattice

- A concept most useful in specifying the underlying geometry of a crystal structure is the 

Bravais lattice. A Bravais lattice is the infinite matrix of points which, together with the 

atoms or molecules situated at the points, form the crystal structure. It has the property that 

the arrangement of lattice sites around any given lattice site is the same as that around any 

other site. Mathematically, a Bravais lattice consists of all points generated by the vectors

where the ai are noncoplanar vectors and the ni take on all integer values. 

The ai, which generate the Bravais lattice, are known as primitive vectors.

In the simple cubic structure, which has an atom at each corner of a cube of dimension a, the 

Bravais lattice can be determined by three mutually orthogonal vectors, each of amplitude a. 

As indicated in Fig. 1.3, these vectors are

where are Cartesian unit vectors . This set of vectors demonstrates the basic 

symmetry of the structure, and it is easy to see that the entire Bravais lattice can be 

constructed with these vectors and (1.1).

zyx ˆ,ˆ,ˆ
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Bravais Lattices

Source: http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/lecture1/Bravais.gif
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Primitive Vectors

- This set of primitive vectors is not unique , however, in defining the simple cubic Bravais

lattice. For example, the set of vectors

can also be used to construct the lattice as well as an infinite number of other sets. Since it is 

generally desirable to use primitive vectors which illustrate the symmetry of the structure, 

the set of vectors defined by (1.2) is preferred for the simple cubic Bravais lattice.
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Body-centered Cubic (bcc)

- The body-centered cubic (bcc) structure has an atom at each corner of a cube of 

dimension a and one at the point determined by the intersection of the cubic body diagonals. 

The Bravais lattice for this structure is shown in Fig. 1.4 with the most symmetric set of 

primitive vectors. These are given by

From the figure it can be seen that the body-centered cubic lattice can also be regarded

as two interpenetrating

simple cubic lattices, each 

with cube dimension a.
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Face-centered Cubic (fcc)

- The face-centered cubic (fcc) structure Bravais lattice shown in Fig. 1.5 is the most 

important lattice for semiconductor crystal structures. It consists of lattice sites at the cube 

corners, with one at each point determined by the intersection of the cubic face diagonals. 

The most symmetric set of primitive vectors is

Figure 1.5

Face-centered cubic Bravais

lattice with symmetrical primitive 

vectors.
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Hexagonal Closed-packed (hcp)

- Another lattice of interest in semiconductor crystal structures is the hexagonal close-

packed (hcp) lattice. Although not a Bravais lattice, because the lattice sites are not 

equivalent, it consists of two interpenetrating simple hexagonal lattices which are Bravais

lattices. The simple hexagonal lattice consists of lattice sites at each corner of an equilateral 

triangle of side a, with an additional set of points on a triangle at a distance c above the first. 

A set of primitive vectors is

simple hexagonal lattice Hexagonal close-packed (hcp)
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Hexagonal Closed-packed (hcp)

- Another lattice of interest in semiconductor crystal structures is the hexagonal close-

packed (hcp) lattice. Although not a Bravais lattice, because the lattice sites are not 

equivalent, it consists of two interpenetrating simple hexagonal lattices which are Bravais

lattices. The simple hexagonal lattice consists of lattice sites at each corner of an equilateral 

triangle of side a, with an additional set of points on a triangle at a distance c above the first. 

A set of primitive vectors is
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Hexagonal Closed-packed (hcp)

- The hexagonal close-packed lattice has two simple hexagonal lattices, with one displaced

from the other by the vector a1 +    a2 +    a3, as shown in Fig. 1.6(b). 

- For non-Bravais lattices this is called the basis vector. Thus the lattice sites of one lattice 

are arranged to be halfway between the sites of the other, with each site directly below or 

above the center of the triangle formed by the sites of the other lattice.

3

1

3

1

2

1

Figure 1.6 (a) Simple hexagonal Bravais lattice and (b) hexagonal close-packed lattice.
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Primitive Unit Cell

- A primitive unit cell is defined as that volume of space which, when translated by all the 

Bravais lattice vectors of (1.1), exactly fills the space of the Bravais lattice. 

- As with sets of primitive vectors there is no unique primitive unit cell for a given Bravais

lattice. However, a primitive unit cell must contain exactly one lattice site, so the volume of

the cell is independent of how it is chosen.

- The most convenient primitive unit cell to visualize is that for the simple cubic Bravais

lattice. This unit cell is a cube of side a determined by the primitive vectors, a1, a2, a3, as

shown in Fig. 1.3. It is called the 

cubic unit cell and is the unit cell 

used to define the lattice constant

whether or not the structure has a 

cubic primitive unit cell. That is, the 

lattice constant for any cubic crystal 

structure is side a of the cubic unit 

cell.
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Primitive Unit Cell

- For noncubic structures, such as the hexagonal close-packed lattice, it is necessary to 

define more than one lattice constant. 

- Let us examine the number of lattice sites in the cubic unit cell for the simple cubic Bravais

lattice. From Fig. 1.3 this unit cell has one lattice site at each of the eight

cube corners. Since each corner site is shared by eight cubic unit cells, each

unit cell has only one lattice site.

Source: 

http://chemistry.umeche.maine.edu/~amar/

spring2012/crystal.html



17

17

Cubic Unit Cell for bcc & fcc

- If we used a cubic unit cell for the body-centered cubic lattice, we would have one lattice 

point from the corners and one point in the center that is not shared for a total of two lattice 

sites per cubic unit cell.

- The face-centered cubic lattice would have one site from the corners and one site on each 

of six faces, each of which is shared by two cells, for a total of four lattice sites in a cubic 

unit cell. The cubic unit cell, however, is not a primitive unit cell for these lattices.

46
2

1
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1


Source: 

http://mrsec.wisc.edu
Source: 

http://mrsec.wisc.edu
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- The cubic unit cell, however, is not a primitive unit cell for these lattices.



18

18

Primitive Unit Cell for bcc & fcc

- To form primitive unit cells for the body-centered and face-centered cubic Bravais lattices, 

we can construct the parallelepipeds determined by the vectors ai in Figs. 1.4 and 1.5. These 

are shown in Fig. 1.7. 

- As can be seen, these primitive unit cells are oblique parallelepipeds with one lattice point 

at each corner. Each of these lattice points is shared by eight primitive unit cells. Thus the 

primitive cell in each case has one lattice site. 

- These primitive unit cells, however, do not exhibit the complete symmetry of their Bravais

lattices. This makes them, conceptually, more difficult to use.
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Wigner-Seitz unit cell

- One of the simplest primitive unit cell that exhibits the full symmetry of the lattice is called 

the Wigner-Seitz unit cell. 

- It is formed by (1) drawing lines from a given lattice point to all nearby lattice points, 

(2) bisecting these lines with orthogonal planes, 

(3) and constructing the smallest polyhedron that contains the given point. 

- As shown in Fig. 1.8, this construction produces a truncated octahedral cell for the body-

centered lattice and a rhombic dodecahedral cell for the face-centered lattice . 
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Wigner-Seitz unit cell

- One of the simplest primitive unit cell that exhibits the full symmetry of the lattice is called 

the Wigner-Seitz unit cell. 

- It is formed by (1) drawing lines from a given lattice point to all nearby lattice points, 

(2) bisecting these lines with orthogonal planes, 

(3) and constructing the smallest polyhedron that contains the given point. 

- As shown in Fig. 1.8, this construction produces a truncated octahedral cell for the body-

centered lattice and a rhombic dodecahedral cell for the face-centered lattice . 
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Wigner-Seitz unit cell for hcp

-Because of the method of construction, the Wigner-Seitz cell translated by all the lattice 

vectors will exactly fill the Bravais lattice and is thus a primitive unit cell (Fig. 1.9).

- The primitive unit cell for the hexagonal close-packed structure is the triangular prism 

formed by the primitive vectors ai in Fig. 1.6. With a basis of 2 atoms! This unit cell exhibits 

the symmetry of the Bravais lattice.
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-Question or comments?


