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Miller Indices

- An important relationship exists between the reciprocal lattice veetors, K, given by (1.17)
and the planes of the corresponding direct lattice.

- A lattice plane is determined by three noncollinear lattice sites. Because of the
translational symmetry of the Bravais lattice, however, each plane contains an infinite
number of sites (Fig. 1.18).

- The relationship is that each K of the reciprocal lattice is normal to some set of planes in
the direct lattice and the length of K is inversely proportional to the spacing between planes
of this set.

- Consider the reciprocal lattice vector K in (1.17) with integral components h, k, | which
have no common factor, and a direct lattice point,

R = nma, + n:8, + nia; (]25)

K = hb, + kb, + [bs

Figure 1.18 Two-dimensional direct lat-
lice showing relationship between lattice
planes and reciprocal lattice vectors.
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Miller Indices

- From (1.13) we have

KR = 2nw(hn, + kna + Inz) = 2aN (1.26)
- Equation (1.26) tells us that the projection of the vector R, along the direction of the vector
Kis M
| K|
- Since the Bravais lattice is infinite, we can find an additional point with this same
projection. For example, the vector R, defined by

| R, | cos 8, = (1.27)

R, = (n; — pha; + (na — pDaz + [ns + p(h + k)las (1.28)

where p is an integer, is such a point. If we then let
p range through all integer values , we construct an
infinite set of points on the same plane (while
keeping N constant). This plane is, of course,
orthogonal to K because of the projection.
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Miller Indices

- In a similar manner, we can define the next adjacent plane by

2m(N + 1)
] R3 | cos b3 = (i K | (1129)
so that the spacing between adjacent lattice planes perpendicular to K is
e 2 (1.30)
v/ (| K |/

- Therefore, it is easy to see that sets of planes in
a direct lattice can conveniently be characterized
by reciprocal lattice vectors or points in the
corresponding reciprocal lattice.

- For this to be a unique prescription, the integers
h, k, 1'in (1.26) must have no common factors.
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Miller Indices

- The use of reciprocal lattice vectors to designate planes in direct space is entirely
equivalent to the Miller indices of crystallography. This can be seen by taking a given K and
choosing the n; of (1.25) so that one plane of the set defined by (1.26) intersects the a; axes at

na;,1=1,23. R = ma, + nxa; + naas (1.25)
- From (1.26) we then have KR = 2u(hn, + kny + Ins) = 2N (1.26)
K°n,al = 21rhn| = 2nuN (1.31)
and so on, or
N N N
ny = ., Ny, =,5\, Ny =, — (1.32)
l th, : I\./f’ I\_l_\'

-Thus the intercepts of the plane are inversely proportional to the integral components of the
reciprocal lattice vector. This result can also be demonstrated for planes that do not intersect
the a; axes at discrete lattice sites.

- Although the primitive lattice vectors, a; , are in general not orthogonal, it is customary in
all cubic lattices for the Miller indices to refer to the orthogonal simple cubic vectors.

- The notation used for specific reciprocal lattice vectors (points) and specific sets of direct
lattice planes is (hkl).
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Miller Indices

- If a plane does not intercept a direct lattice vector (intercept at infinity) , the corresponding
Miller index is zero.

- If a plane intercepts in a negative direction, the Miller index has a line drawn over it.
Figure 1.19 shows several examples of this notation for lattice planes in cubic lattices.

[010]

[011]

(111)

Figure 1.19 Examples of Miller indices for various planes and directions in a cubic lattice.
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Miller Indices

- Referring to Figs. 1.15 and 1.17, the corresponding notation for reciprocal lattice vectors
is k, = (100), k, = (010), k, = (001). The origin or I'-point is also referred to as (000).

-To avoid confusion with planes in the direct lattice and directions in the reciprocal lattice,
square brackets are used for directions in the direct lattice and planes in the reciprocal lattice.
That is, a, = [100], a, = [010], and so on, and the point

R =n;a; + n,a, + nya,

lies in the direction [n,n,n,] from the origin.

-There is also a specific notation to indicate families of planes or reciprocal lattice vectors
which are equivalent because of the lattice symmetry.

-For example, {100} is taken to indicate all the planes (100), (010), and (00I).

- The equivalent notation for directions is (100), which is taken to mean all the directions
[100], [010], [001] and their reciprocals [100], [010], [001] .
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Miller Indices

Table 1 Miller Indices and Their Represented Plane or Direction of a Crystal Surface

Miller
Indices
(hkl)  For a plane that intercepts 1/h, 1/k, 1/I on the x-, y-, and z-axis, respectively.
(hkl)  For a plane that intercepts the negative x-axis.
{hkl}  For a full set of planes of equivalent symmetry, such as {100} for (100), (010),
(001), (100), (010), and (001 ) in cubic symmetry.
[Akl]  For a direction of a crystal such as [100] for the x-axis.
(hkly  For a full set of equivalent directions.
[#klm]  For a plane in a hexagonal lattice (such as wurtzite) that intercepts 1/h, 1/k, 1/1,
L/m on the a;-, g,-, a;-, and z-axis, respectively (Fig. 1g).

Description of plane or direction
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Miller Indices

- Four Miller indices are used for hexagonal lattices: one for each of three coplanar vectors,
which are spaced at 120°, and one in the direction normal to this plane.

- Thus planes and reciprocal vectors are (hklm), while directions in the direct lattice are
[hkim]. Otherwise, the notation is the same as for cubic lattices.
- Several examples are shown in Fig. 1.20.

(0001]

(0001) R —

8

(1100}

a, L
(0110) (1000]

Figure 1.20 Examples of Miller indices for hexagonal lattices.



ﬁl z:gﬁlietﬁzal‘%"%:
Hexagonal GaN Planes

m -plane {1100} a -plane {1120} r -plane {1102}

c -plane {0001} (1101) plane
@, [1210] [1120]
[2110] 2, [2110]
a0, [1120] [1210]

{1122} plane
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Diffraction

An important application for the concepts discussed in this chapter is the
analysis of wave diffraction by a crystal. As we will show, diffraction is
governed by the Bragg condition,

2d sin 6 = nA (1.33)

where d is the spacing between adjacent {hkl} planes given by (1.30), 6 the
angle between the incident wave and the plane, n an integer indicating the
diffraction order, and \ the wavelength. Equation (1.33) indicates that the
longest wavelength that can be diffracted by a set of planes with spacing d
is

)\max = 2d (134)

Since d is typically several angstroms, crystal diffraction is limited to wave
particles such as neutrons, electrons, and high-energy photons (x-rays).

. f—“| (1.30)

11
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Diffraction

The de Broglie wavelength associated with neutrons or electrons is
related to the energy by

hZ

B =
2m\>?

(1.35)

where / is Planck’s constant (6.6262 x 10 3* J-s) and m is the mass of the
wave particle. For neutrons, m = 1.675 x 10~27 kg and

0.28601
[€(eV)]"

where an electron-volt (eV) is equal to 1.60219 x 10~ '? J. Thus very low
energy neutrons can be diffracted by a crystal. For electrons, m = 9.10956

x 107*" kg and

ANA) = (1.36)

12.2643
[€(eV)]'"

MA) = (1.37)

12
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Diffraction

For x-rays and other photons the wavelength is related to energy by

hc
§ = (1.38)
where ¢ is the velocity of light (2.9979 x 10® m/s). From (1.38),
4
7\(10\) i 1.23986 x 10 (1.39)

€(eV)

and x-rays with energies of order 10* eV will be diffracted.

13



-_—e—illi

Lattice Structure Factor

To analyze the conditions under which diffraction occurs, consider an
x-ray plane wave with electric field,

E = Ey exp [i(k'r — w1)] (1.40)

incident on a multielectron atom. In (1.40) k is the wavevector., which is
related to the wavelength A by | k | = 2@/\ and w is the angular frequency.
The incident electric field accelerates the electrons to higher energy, during
which time they emit x-rays in all directions with the electric field,

E = Eon" exp [i(k"sr — wt)] (1.41)

The electric field in (1.41) is a solution of the radial wave equation where
k' indicates a change in wavevector and phase and f;is the atomic scattering
factor of an atom indexed by a basis vector d.

A
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Lattice Structure Factor

To analyze the conditions under which diffraction occurs. consider an
x-ray plane wave with electric field,

E = Ey exp [i(k'r — w1)] (1.40)

incident on a multielectron atom. In (1.40) k is the wavevector., which is
related to the wavelength A by | k | = 2@/\ and w is the angular frequency.
The incident electric field accelerates the electrons to higher energy, during
which time they emit x-rays in all directions with the electric field,

E = EOTf" exp [i(k"'r — wit)] (1.41)

The atomic scattering factors depend on the number of electrons per
atom, the scattering angle, and the incident wavelength and are defined as
the ratio of the amplitude scattered by the actual electron distribution in an
atom to the amplitude scattered by one isolated electron. When all the elec-
trons in an atom scatter in phase (0) with respect to the observation point,
fals equal to the atomic number.

15
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Lattice Structure Factor

To examine these interference effects, consider the difference in phase
between the radiation scattered by two atoms separated by a lattice vector

R and basis vector d. As indicated in Fig. 1.21, the path difference between
the incident and scattered waves for the two atoms is

R+ dk R+ dK
| k| | K’ |

IR +d|cos8 — |R + d|cos p = (1.42)

Figure 1.21 Schematic of phase difference between radiation scattered from an
atom at the origin and an atom at R + d.

16
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Lattice Structure Factor

For elastic scattering (no energy loss) the magnitudes of the incident and
scattered wavevectors are equal,

|k|=|K | (1.43)

and the phase difference is
(k — k')(R +d) = Ak'(R + d) (1.44)

where AK is the scattering vector.
If we use the phase of the wave scattered from the atom at the origin
as our phase reference, the associated phase factor for this atom is

exp (0) =1 (1.45)

The phase factor for the atom at R + d is then

Origin

exp [ Ak«(R + d)] (1.46)

A
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Lattice Structure Factor

Summing the phase factors for all N unit cells indexed by the lattice vectors
R and all atoms in the unit cell indexed by the basis vectors d, we define a

lattice structure factor,

Fr=>Y fsexp [i Ak«(R + d)] (1.47)
R d

which from (1.41) has the phase of and is proportional to the electric field
of the resultant scattered radiation. It is also useful to define a basis structure

factor,

Fi= D) faexp (i Ak-d) (1.48)
d

in which case (1.47) for the lattice structure factor becomes

Fr=F; exp (i Ak'R) (1.49)
R

where R 1s given by (1.1).

18
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Lattice Structure Factor

Since the intensity of the scattered radiation depends on the square of
the resultant electric field, we will examine the variation of FxFx with Ak-R.
For simplicity, assume a one-dimensional lattice with N unit cells, so that

R = na (1.50)

for

Equation (1.49) is then

N=-1
Fr

— = Y exp (in Ak-a) (1.51)
Fd n=1(
for
x = Ak-a (1.52)
sin? N Ak-a
FrFg 2
L - (1.56)
Fder .« o ﬂk'ﬂ
sin >

19



A
ﬁ T no'lﬂx"ﬂl'ﬂ'1 IEﬁ
S Gwangju Institute of Science and Technology

Diffraction Conditions

Equation (1.56) for the relative intensity of the scattered radiation as
a function of Ak-a is plotted in Fig. 1.22 for N = 8. As can be seen, the
scattered radiation has significant value only when

Ak-:a = 2mn (1.57)
where n has integer values (including zero).
FaFn
F3Fq
- -~ ~ PR
'// \\ // \\\
i 64 1 | | |
\\\_j’/l \\\ .L//I
L |
|
s | . . N Ak-a
2} ! " sin®
| FrFr 2 1.56)
l —
' Fde . , Ak-a el
o } SIM .
|
|

—>» Ak * a
0 s m 3 2n

2 2

Figure 1.22 Variation of scattered intensity with Ak-a for a one-dimensional lat-
tice with eight unit cells.

20
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Diffraction Conditions

In fact, for large values of N,

(1.56) becomes approximately
FrFr
FiF4
where 8(Ak-a — 2wn) is the Dirac delta function. (The secondary maxima
in Fig. 1.22 persist, however, even as N approaches infinity.) Thus (1.57)

is the condition for constructive interference or diffraction maxima for a
one-dimensional crystal. In three dimensions (1.57) 1s

Ak-R = 2m(integer) (1.59)

=~ N%8(Ak-a — 2mn) (1.58)

which from (1.19) defines a reciprocal lattice vector, K. Thus the condition
for diffraction is\that the scattering vector Ak be a reciprocal lattice vector
K, or

k-k'=Ak =K (1.60)

K:R = 2w(hn, + kny + In;) = 2n(integer) (1.19)

21
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Diffraction Conditions

To derive the Bragg condition, notice from Fig. 1.23 that

|K|=|K'|sin® + |k|sin® (1.61)

For | k| = | k' | = 27/, (1.61) is

) .
K| = Tﬂ (2 sin ) (1.62)

20 K

Figure 1,23 Diagram indicating the Bragg diffraction condition.

22
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Diffraction Conditions

From (1.30),

2m

| K| ale; (1.63)

where d 1s the spacing between adjacent {hkl} planes. Allowing for higher-
order diffraction, (1.62) and (1.63) give

2d sin 8 = nh (1.33)

where n 1s an integer denoting the order of diffraction.

The spacing between adjacent {hkl} planes can be calculated from

(1.63), (1.17), and the reciprocal lattice unit cell vectors. For a simple cubic
unit cell, (1.17) and (1.21) result in

2
K = f(fue + k9 + I£) (1.64)

where a 1s the lattice constant or length of the side of the cube.

23
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Diffraction Conditions

From (1.30),

o (1.30)

where d 1s the spacing between adjacent {hki} planes. Allowing for higher-
order diffraction, (1.62) and (1.63) give . N, . e W W

2d sin 8 = nh

where n 1s an integer denoting the order of diffracti
The spacing between adjacent {hkl} planes c *

(1.63). (1.17), and the reciprocal lattice unit cell vect %

unit cell, (1.17) and (1.21) result in

2
K = f(hi + k9 + I£) (1.64)

where a 1s the lattice constant or length of the side of the cube.

24
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Diffraction Conditions

Using (1.63) and (1.64) gives us

a

& = (h? + k2 + [)172

(1.65)

'I'hc? diffraction maxima corresponding to this spacing and indicated by the
reciprocal lattice points or vectors in (1.64) are referred to as hkl maxima.

FaFq
FiFq
A

il

S

[
T

|
_M—’Akoa

0 T " 3 2n
2 2

Figure 1,23 Diagram indicating the Bragg diffraction condition.

Figure 1.22 Variation of scattered intensity with Ak-a for a one-dimensional lat-
tice with eight unit cells.
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In the discussion above we ignored the contents of the unit cell and

examined the phase differences in the radiation scattered from N unit cells
to establish the conditions under which diffraction occurs. In a real crystal

with a basis, however, many of the maxima allowed by

Ak‘R = 2m(integer) (1.59)

are not observed because of phase cancellation within the unit cell. For this

reason we will now examine the basis structure factor,

Fs=Y faexp (i Ak-d) (1.48)
d

where the basis vector d indexes the atoms in the unit cell.

The basis vectors for the various crystal structures are shown in Figs.

1.10, 1.11, and 1.12 and, in general, are given by

d = Xq8) + Vgqaz + Zga3

(1.66)

where x4, yu, and z, indicate the position of atom ¢ with respect to the
primitive vectors of the unit cell. The scattering vector Ak is a reciprocal

lattice vector given, in general, by
Ak = hb; + kb + [ba

(1.67)
26
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Basis Structure Factor

For a simple cubic unit cell (1.2) and (1.66) result in
d = a(xaf + yay + z42) (1.68)
and (1.21) and (1.67) produce

2 |
Ak = f(hf + k5 + 12) (1.69)

Using (1.68) and (1.69) in (1.48), the basis structure factor is
Fq = 2 fa exXp [2mi(hx,; + kyd + 1z4)] (1.70)
d

where h, k, and [ are the Miller indices of the diffracting planes. Equation
(1.70) determines which diffraction maxima are not allowed because of phase
cancellation within the unit cell.

28
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Basis Structure Factor

As an example, consider atoms in the face-centered cubic (fcc) unit
cell shown in Fig. 1.5. This cell can be represented as a simple cubic unit
cell with a basis of four atoms: one at the origin and one at each of the three
primitive vectors given by (1.5). That is, the eight atoms in the cube corners
are each shared by eight cells for an average of one atom per cell; the six
atoms on the cube faces are each shared by two cells for an average of three
atoms per cell.

NVN)
~<>
x>

Figure 1.5 Face-centered cubic Bravais lattice with symmetrical primitive vec-
tors.
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Basis Structure Factor

The basis vectors for these four atoms are

d=0, ¢+, SO+ ad Z@E+H (LD

Assuming that all four atoms are the same, (1.70) is

fii - 1 s eiw(lz+k) + (,i’rr(k-'b-!) + ‘)i'rr(l-e-h) (]72)
fa
Thus, for planes such that A, k, and [ are either all even or all odd,

Fq = 4fy (1.73)
and diffraction occurs. For planes such that one of the A, k, or [ is even or
one is odd,

F,=0 (1.74)

and no diffraction occurs.

30



