

Optoelectronics (광전자공학)

Lecture 1. Introduction

Young Min Song

Associate Professor

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

http://www.gist-foel.net

ymsong@gist.ac.kr, ymsong81@gmail.com

A207, 232655

Overview – Optoelectronic Devices

Optical interconnection

Laser Diodes, Photodetectors

Lightings, Projection displays

RGB Light Emitting Diodes

Modulators and others

Electro-absorption modulators,

RC-LEDs

Photovoltaics

III-V solar cells, c-Si, a-Si, etc.

Overview - Optical simulations

RCWA, periodic patterns, multi-layers

FDTD, plasmonics, metamaterials

3D e-field profile, Phase mask, 3D pattern construction

Ray optics, biomimetic designs

Spherical

Our design (Three)

Overview – Flexible Devices

Insect's Eye Cameras

Stretchable optoelectronics

Nature **497**, 211 (2013)

Transient Electronics

Bio-degradable optoelectronics

Science **337**, 1640 (2012)

Optogenetics

Injectable optoelectronics

Science **340**, 211 (2013)

Optoelectronics

Wikipedia

Optoelectronics is the study and application of <u>electronic</u> devices that source, detect and control <u>light</u>, usually considered a sub-field of <u>photonics</u>. In this context, *light* often includes invisible forms of radiation such as <u>gamma rays</u>, <u>X-rays</u>, <u>ultraviolet</u> and <u>infrared</u>, in addition to visible light. Optoelectronic devices are electrical-to-optical or optical-to-electrical <u>transducers</u>, or instruments that use such devices in their operation.

Examples – Semiconductor lasers, Light emitting diodes, Photodetectors, Solar Cells, Electro-Absorption modulators, Electro-Optic modulators, (Image sensors)

Optoelectronics is based on the <u>quantum mechanical</u> effects of <u>light</u> on electronic materials, especially <u>semiconductors</u>, sometimes in the presence of <u>electric fields</u>.

Prerequisites – Semiconductor Physics and Devices, Electromagnetics, Optics

Textbook and References

Physics of Photonic Devices, Chuang, Wiley, 2nd edition

Optical Properties of Solids, M. Fox, Oxford, 2nd edition

Additional reading

Solid State Electronic Devices, B. G. Streetman

Optoelectronics and Photonics, S. O. Kasap

Fundamentals of Photonics, B. A. E. Saleh

Selected research articles

Course Schedule

Weekly Course Schedule		
Calendar	Description	*Remarks
1st week	Overview	
2nd week	Fundamentals of EM waves, Optics	
3rd week	Fundamentals of EM waves, Optics	
4th week	Optical properties of solids	
5th week	Heterostructures	
6th week	Optical process in semiconductors	
7th week	Optical process in semiconductors	
8th week	Mid-term Exam	
9th week	Laser diodes	
10th week	Light emitting diodes	
11th week	Photodiodes, Solar Cells	
12th week	Optical modulators	
13th week	Flexible Optoelectronics Technology	
14th week	Student presentation	Term Project
15th week	Student presentation	Term Project
16th week	Final Exam	

Assessment and grading

Home work (10%)

Midterm (30%)

Student presentation/report (30%)

Final Exam (30%)

Assessment and grading

Student presentations/reports (30%)

One literature presentation and report will be required. For this, you will read and article (not a review article) on optoelectronics/nanophotonics published recently in one of leading scientific journals, such as Science or Nature family journals, and make a presentation and report with a critical review of the paper. In your presentation/report you should describe major observations of the article and provide its summary and critique.

Your presentation/report is important; it will show how you can apply your new knowledge and work with the current scientific literature in the optoelectronics/nanophotonics areas.

Assessment and grading

Tentative list of topics for possible presentations

- Control of heat radiation with photonic structures
- Micro-LED displays
- Random lasers
- Coherent Perfect Absorber or 'Anti-Laser'
- Optical switch for silicon photonics
- Electro-absorption modulators
- All-dielectric metasurfaces
- Photonics/Optoelectronics with artificial intelligence
- Optical Imaging with artificial intelligence
- Bioinspired Photonics

Lecture Notes

Http://www.gist-foel.net

Lecture

Question or Comment?

Example: Cutting Edge Technology on LED research

Conventional LEDs

Conventional LED modules

Single LED chip

Unconventional LEDs

Unconventional LEDs

Adv. Mater. Technol. (2018)

Unconventional LEDs

Adv. Mater. Technol. (2018)

Patch-type LEDs for Cerebral Oximetry

Patch-type LEDs for Cerebral Oximetry

Nat. Comm. (2014)

- Research Motivation, Scientific Impact
- Operating principles
 - LEDs, PDs
 - Device structures and fabrication details
 - Materials issues, optical behaviors
 - Semiconductor fundamentals, EM waves (Prerequisites)

