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Equilibrium Distributions

-In Section 2.6 the distribution of electrons among conduction and valence bands in a 

semiconductor was considered briefly. 

- We used the tight-binding approach to follow the banding of atomic states as the atoms were 

brought together to form a crystal. From the known electronic configuration of the atoms, the 

total number of electrons available to occupy the energy bands of the crystal was obtained. 

- Qualitatively, we found that all of these available electrons were used to form the bonds of 

the crystal at 0 K, so that, in the band picture, the valence bands were completely full and the 

conduction bands were completely empty. 

- When we abandon the concept of a perfect crystal and introduce imperfections in a crystal, 

such as impurities and lattice vibrations, the distribution of electrons among available states 

has to be considered in more detail. This is the purpose of the present chapter.
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Statistics

- Let us consider the number of electronic energy levels and states in a band. For a crystal with 

N primitive unit cells there are N energy levels per energy band.

- In the general case of a semiconductor with donors and acceptors and their associated energy 

bands ,

- Equation (4.10) gives the total number of ways all of the donor, acceptor, and band states can 

be occupied by n' electrons, assuming that each state has an equal probability of being 

occupied. 

- From this we must now determine the most probable distribution of electrons among all the 

states.

- Constraints are given as below,

where n' is the total number of electrons in the crystal and E  ' is the total internal electron 

energy.
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Statistics – Variables

-E k : each of these energy levels can be uniquely indexed by the wavevector k when we use 

only values of k in the first Brillouin zone.

- gk : degeneracy or multiple states per energy level E k

- nk : number of occupied electrons in the gk states. nk is less than or equal to gk.

- For Nd (= N0
d + N +d) total donor atoms there are 2Nd states, including spin.

- For Na = N0
a + N -a total acceptor atoms there are 2Na states, including spin.
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Statistics

- We obtain the most probable distributions,

respectively, where we have defined a Fermi energy as

- Equations (4.24), (4.25), and (4.26) are the Fermi-Dirac distribution functions for band, 

donor, and acceptor states, respectively. When the exponentials in the denominators of these 

equations are much greater than 1, the distribution of electrons can be approximated by the 

classical Maxwell Boltzmann functions. 

- The undetermined multiplier E f is evaluated from the constraint (4.17) that the total 

number of electrons in the system remain constant. Thus there is an intimate relationship 

between the Fermi energy and the number of electrons. 
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Thermodynamics

- The first and second laws of thermodynamics can be represented by Euler's equation,

which relates the internal energy of a system, E  ', to the intensive variables of temperature (T) , 

pressure (P) , chemical potential (μi) , and internal electrostatic potential (ψ); and the extensive 

variables of entropy (S), volume (V), particle number (ni), and total electric charge (Q). 

-Extensive variables are those which depend on concentration, while intensive variables are 

those which do not. Equation (4.28) can be taken as the basic law of thermodynamics. From it 

we can define the Helmholtz function,

and the Gibbs function as

both of which have minimal properties .

- The Helmholtz function , F , is a minimum at thermal equilibrium for systems in which T, V, 

ni, and Q are constant. 

- The Gibbs function , G, is a minimum at thermal equilibrium for systems in which T, P, ni , 

and Q are constant.
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Thermodynamics

- For our purposes (4.28) is

since we are considering only electrons. In this case the total charge, Q, is equal to - qn'. 

Using this in (4.37) and (4.37) in (4.29), we have the Helmholtz function in the form

so that

- Thus, the Fermi energy is equal to the sum of the chemical potential and the internal 

electrostatic potential energy. Since the electrochemical potential for electrons is

we see that the Fermi energy in general is equal to the electrochemical potential.

- For the energy band states (4.24), the equilibrium Fermi-Dirac distribution function has the

form

the Fermi energy is the change in free energy of the 

crystal when an electron is added or taken away



10

Thermodynamics

- Equation (4.41) gives the probability that a band state of energy E is occupied by an 

electron at temperature T. 

- We can see that at 0 K all states with energy below E f are occupied while all states above E f
are empty (Fig. 4.2). For a state at 0 K with energy E f  the occupation probability is not 

defined and the derivative with respect to energy is a delta function. 

- For a state at finite temperatures 

with energy E f , the occupation 

probability is 0.5 and the 

derivative is finite . Equation (4.41) 

will be used to determine the 

occupancy of conduction bands 

with electrons.

- When the exponential factor is 

sufficiently large, the Fermi-Dirac

distribution function can be 

approximated, in each case, by a 

classical Maxwell-Boltzmann 

distribution.
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Density of States

- To determine the relationship between the total number of electrons in a band and the Fermi 

energy, we must first evaluate the density of states in the first Brillouin zone. 

- From (4.24) and (4.41) the number of electrons in each state indexed by k is

- The total number of electrons, n' , is found by summing (4.43) over all k. When gk is 

sufficiently large, the summation can be replaced by an integral over all energies and

The factor g(E ) contains the spin degeneracy and the total density of energy levels in the 

crystal. The concentration of electrons in the conduction band can be calculated from

where V is the crystal volume, N(E ) dE is the total number of states that lie between the 

constant energy surfaces E and E + dE , N(E ) is the density of states , E C is the energy at the 

bottom of the conduction band, and E T is the energy at the top of the conduction band.

the density of states (DOS) of a system describes the number of states per interval 

of energy at each energy level that are available to be occupied by electrons

(Wikipedia)
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Density of States

- Figure 4.3 indicates that the total volume in reciprocal space between E and E + dE is 

given by ∫s dS dkn . From (2 .29) the volume occupied by each value of k is (2π) 3/V. Thus, 

since each value of k represents a state that can be occupied by two electrons with different 

spins, the total number of states between E and E + dE is

where dkn is the component of dk

normal to the constant-energy 

surfaces and dS is the differential 

surface area for the constant -energy 

surface, S.

The total derivative of energy is
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Density of States
- Using (4.47) in (4.46), the density of states is

-This equation can be used to determine the density of states for an energy band with any 

general dispersion relationship , including a nonquadratic one.

- We note in passing that the integrand in (4.48) diverges when ∇k E = 0.

Although the resulting density of states remains finite at these points, discontinuities

in the slope of N(E ) versus E are produced. These commonly occur at band extrema, as well 

as at other points, and are referred to as van Hove singularities.

- Let us determine the density of states for ellipsoidal energy band extrema with a quadratic

dispersion relationship as given by (2.123) . For (2 .123) the coordinate system has been 

rotated to diagonalize the effective mass tensor. 

- In general, these extrema can occur at any point k0 in the first Brillouin zone, and there will 

be equivalent conduction band minima at each equivalent point k0 in the first Brillouin zone .. 

- To simplify the mathematics, consider just one of the equivalent minima and translate 

coordinates so that k0 = 0. 
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Density of States

- Since the density of states must be independent of the coordinate system, this is easily 

justified. The relationship between E and k for the minimum at the origin is then

where the + and - refer to conduction band and valence band extrema, respectively. Equation 

(4.49) can be put in the form

where the axes of the ellipsoid are

Since the volume of an ellipsoid with axes ai is

the differential volume between the constant energy surfaces E and E + dE is
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Density of States

- Dividing (4.53) by (2π) 3/V, the volume occupied by each energy level indexed by k, and 

multiplying by 2 because each energy level can be occupied by two electrons of opposite spin 

and thus actually represents two electron states, the density of states for electrons is

where identity h = ħ2π has been used. Equation (4.54) gives the density of states for any 

single energy band extremum which can be represented by a quadratic dispersion relationship.

- The density of states of a band with multiple equivalent minima can be expressed in the 

same form as

where

is the density-of-states effective mass. 

- For band extrema with cylindrical symmetry,

where ml and mt are the effective masses longitudinal and transverse to the principal axis of 

revolution. 
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Density of States

- For a single extremum with spherical symmetry,

and the density-of-states effective mass is just the electron effective mass.

For Impurities

- The density of states for localized levels in the energy gap between bands can also be easily 

determined. 

- If we consider the ground states of hydrogenic impurities, the total number including spin is 

2Ni . However, both spin states cannot be occupied at the same time so the effective number of

states is Ni . When the states are discrete, the density of states at E i is infinite. The integral 

over all possible states, however, must be Ni . 

- Therefore, the density of states can be represented as

where δ(E - E i) is the Dirac delta function.
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Density of States – 3D  0D

http://britneyspears.ac/physics/dos/images/Image441.gif

3D: 2D: 

1D: 

Density of States in n-Dimension

0D: 

http://www.pi4.uni-stuttgart.de/NeueSeite/Lehre/FKPh2007/files/density_of_states.pdf
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- Having determined the density of states in various situations, we are now in a position to 

examine the distribution of the total number of electrons, n' , among the different bands and 

levels. Let us first look at the concentration of electrons in the lowest-lying conduction bands. 

From (4.45) the concentration or number of electrons per unit volume in these conduction 

band minima is

Effective Density of States

where E t is the energy at the top of the bands. From Fig. 4.2 we see that fo(E ) approaches 

zero at high energies, so that we can, to a good approximation, replace E t with ∞ in (4.63). 

Using (4.41) for fo(E ) and (4.55) for Nc(E ), we have

for ellipsoidal minima. When we introduce the dimensionless variables,

(4 .64) becomes

Nc(E )

fo(E )
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- The Fermi-Dirac integral of order     is defined as
2

1

With this expression the electron concentration in the conduction band minima is

Values for F1/2 (𝜂) are tabulated in Appendix B.

- When E f is less than about E c - 4kT, the Fermi-Dirac distribution can be approximated by 

the Maxwell-Boltzmann distribution. In this case (4 .66) becomes

But

and (4.69) is therefore

Effective Density of States
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- Notice that the pre-exponential factor in (4.71) is the same as in the more general case of 

(4.68). This factor,

is referred to as the effective conduction band density of states. This terminology reflects the 

fact that, in this classical approximation, the conduction band can be regarded as a single level 

with degeneracy Nc at the energy level E c . 

- Using Nc from (4.72), (4.71) has the simple form

where (E f - E c )/kT is negative.

- A similar approach can be taken for the concentration of holes in the highest-lying valence 

bands. The hole concentration is given by

Effective Density of States
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- Let us determine the value of the Fermi energy in the situation where the number of 

electrons in the conduction band is equal to the number of holes in the valence band. Since 

this equality would apply when there were no impurity or defect levels in the energy gap or 

when thermal excitation would produce a much larger number of electrons and holes than the 

impurities, it is called the intrinsic case. Here we have

where ni is the intrinsic carrier concentration. From the classical approximation (4.73) and 

(4 .79),

Equation (4.82) indicates that in the intrinsic case and at finite temperatures, the Fermi level is 

displaced from the center of the energy gap, toward the conduction band if Nv is greater than 

Nc , or toward the valence band if Nc is greater than Nv .

- The effective valence band density of states is





Effective Density of States
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