

Optoelectronics (광전자공학)

Lecture 6. Absorption/Luminescence

Young Min Song

Associate Professor

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

http://www.gist-foel.net

ymsong@gist.ac.kr, ymsong81@gmail.com

A207, 232655

Interband absorption

Photon excites electron from filled valence to empty conduction band

Fundamental absorption edge at E_g

Process creates an electronhole pair

Direct and indirect absorption

- Transitions appear as vertical lines on E-k diagrams.
- Phonon needed to conserve momentum for indirect gap materials.
- Indirect absorption 2nd order process, therefore low probability.

Transition rate for direct absorption

- The optical absorption coefficient is determined by the quantum mechanical transition rate W for exciting an electron in an initial quantum state to a final state by absorption of a photon of angular frequency.
- The transition rate is given by Fermi's golden rule:

Transition rate for direct absorption

Transition rate for direct absorption

GaAs band structure

FCC lattice Brillouin zone

- Direct gap at 1.5 eV
- Very important optoelectronic material
- Strong absorption

Four-band model

- Simplified band structure first proposed by Kane (1957)
- Valid near k = 0
- (1) Heavy hole transition
- (2) Light hole transition

Joint density of states

InAs band edge absorption

Direct versus indirect absorption

Germanium band structure

Germanium band edge absorption

Silicon absorption

Silicon band structure

Luminescence

- Luminescence : Spontaneous emission in solids
- Fluorescence : Fast luminescence electric-dipole allowed
- Phosphorescence : Slow luminescence electric-dipole forbidden
- Electroluminescence: electrical excitation
- Photoluminescence: optical excitation
- Cathodoluminescence: cathode ray (e-beam) excitation

Luminescence

Direct gap materials

conduction band

valence band

Indirect gap materials

Photoluminescence

Photoluminescence spectroscopy

sample in cryostat

Electroluminescence

Lattice matching

substrate materials

Question or Comment?