Semiconductor Device Processing Presentation # Transmission Line Model 20181018 Mi Jang **Ohmic Contact Measurement** ## 1. Why is TLM required? Current must flow in both direction between source and drain. Ohmic contact is very important! ## 1. Why is TLM required? #### Contact Resistance Small region in the vicinity of the contact $$R_c = \rho' \frac{\Delta x}{A_c}$$ $$\rho_c = \lim_{\Delta x \to 0} (\rho' \Delta x) = R_c A_c$$ A_c : Contact area R_c : Contact resistance ρ_c : Contact resistivity ## 1. Why is TLM required? $$R_T = 2R_m + 2R_c + R_{semi}$$ Values caused by contact Metal has very low resistivity $$R_{semi} = R_s \, rac{L}{W}$$ $$R_{semi} = R_s \frac{L}{W}$$ $$R_T = \frac{R_s}{W} L + 2R_c$$ Contact resistance may be obtained by measuring the total resistance. ## 2. Principle of TLM #### **Current Crowding** The physical length and width of the electrode should not be used directly to determine the contact resistance. #### Effective area of contact: L_T Called by transfer length $$R_c = \frac{\rho_c}{L_T W} = \frac{R_s L_T}{W}$$ # 2. Principle of TLM $$R_{T} = \frac{R_{s}}{W}L + 2R_{c}$$ $$R_{T} = \frac{R_{s}}{W}L + 2\frac{R_{s}L_{T}}{W}$$ $$R_{T} = \frac{R_{s}}{W}(L + 2L_{T})$$ Patterning in a yellow room for Mesa-isolation Mesa etching with ICP-RIE Patterning in a yellow room for Ohmic metallization Ohmic metallization with E-beam evaporator Rapid Thermal Annealing (b) TLM cross-section-view Figure 3.2: Schematic of TLM test structure #### Metal Alloying Work function is vital factor in ohmic contact! - Reduction of work function - Increase of conductivity | Role of Metal | | |---|---| | Aluminum (Al) | Gold (Au) | | It is easy to deposit thin films of Al by vacuum evaporation. It has good adherence to the silicon dioxide surface. It forms good mechanical bonds with silicon by sintering at about 500°C or by alloying at the eutectic temperature of 577°C. It forms low-resistance contacts with p-type silicon and with heavily doped n-type silicon. | It improves ohmic contacts conductivity. It prevents oxidation for other metals during high annealing temperature. | | During packaging operation if temperature goes too
high, say 600°C, or if there is overheating due to
current surge, Al can fuse and penetrate through the
oxide to the silicon and may cause short circuit in the
connection. | It acts as a deep level trap and recombination center, i.e. charge carriers of opposite sign do recombine at Au defects in Si and get lost to the current. It has poor adhesion. | #### 4. How to measure Contact resistance #### 2 point probing - Advantages - Easy to measure contact resistance - Disadvantages - Lots of assumptions - Low accuracy ## 4. How to measure Contact resistance 4 point probing The elimination of resistances between contact and wire ## 4. How to measure Contact resistance Mask pattern for mesa etching Rc(ohm*mm) = Rc(ohm) x width #### Thank you for hearing my TLM presentation!