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Basic Quantum Mechanics

- An electron characterized by its wavefunction, ψ(r) , and spin orientation, s, must satisfy 

the time-independent Schrodinger equation,

where E is the total energy of the electron and H is the appropriate Hamiltonian operator.

-The Hamiltonian takes into account all kinetic and potential energy terms, including applied 

forces and interactions with other particles. 

- If the electron is traveling in a force-free region where it does not interact with other 

electrons (a free electron), the Hamiltonian contains only a kinetic energy term for the one 

electron, p2/2m, where the momentum operator, p , is

and m is the free electron mass. In (2.2) ħ = h/2 where h is Planck's constant. 
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Basic Quantum Mechanics

- Under these conditions Schrodinger's equation (2.1) reduces to its free one-electron 

formulation,

which has solutions of the form

where k is any position-independent vector.

- With these solutions we can easily determine the free-electron energy from (2 .3) as

- The momentum is determined by operating on (2.4) with (2.2) to give
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Electron in a Potential

- Considering the electron as a particle with velocity  v =  p/m, we arrive at the simple 

classical expression for the total energy of a free electron,

- From (2.4) we can also consider the electron as a plane wave with wavevector k and de 

Broglie wavelength,

- The problem we consider in this chapter is how this free-electron description is modified 

for electrons in a periodic crystal structure . 

- We expect a substantial modification for the following reasons. 

1. The atoms in the crystal , consisting of valence electrons, core electrons, and nuclei, 

produce a potential energy U(r) with the periodicity of the direct Bravais lattice,

for all direct lattice vectors, R.

2. Equation (2.8) tells us that a free-electron wavelength is of the same order of magnitude 

as the lattice periodicity. Thus we expect electrons to be strongly diffracted by the lattice.
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One Electron Approximation

- To solve this problem, one would, in principle , have to include in the Hamiltonian of (2.1) 

terms that take into account interactions among the nuclei , core electrons , and valence 

electrons. Such a problem would be difficult to formulate, let alone solve. 

- Since, in semiconductors the valence electrons are shared among atoms, a useful 

approximation is to treat the valence electrons as non-interacting entities that move through 

the crystal under the influence of an effective potential which includes the combined

effects of the nuclei, the core electrons , and other valence electrons . 

-Although not obvious a priori, this one-electron approximation provides a good description 

of semiconductor properties. In this manner we formulate a one electron Schrodinger 

equation from (2 .1) and (2.9) , where U(r) is taken as an effective one-electron potential: 

that is , the potential that the nuclei, core electrons, and all the other valence electrons 

produce for one valence electron.

- The problem is then a manner of solving (2.1) for the allowed one electron energy levels.
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One Electron Approximation

- There are several reasons why this one-electron approximation works as well as it does.

1. Electrons tend to be spatially removed from one another by Coulomb repulsion and by   

Pauli exclusion when they have the same spin. This reduces the interaction between the  

one electron and the rest of the valence electrons taken as a whole.

2. The valence electrons tend to cluster around the ion cores (nuclei and core electrons) 

due to Coulomb attraction. This effectively screens the Coulomb attraction of the ionic 

cores for the one electron and reduces this interaction.

3. Electrons passing near the ionic cores are accelerated by the Coulomb attraction. 

Because of this, electrons spend less time in the neighborhood of a core, effectively 

reducing the Coulomb attraction. (It is this effective repulsion that produces the 

pseudopotential discussed in Section 2.5.)

- For these reasons we will examine in detail relatively simple one-electron models that 

illustrate some of the more important properties of electrons in periodic structures . We then 

discuss the results of more detailed computations on specific crystal structures.
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Bloch Electrons

Properties of electrons in periodic structures which are independent of the specific nature of 

the potential U(r). 

- Bloch electron : an electron that obeys the one-electron Schrodinger equation in a periodic 

potential. 

- Bloch found that such electrons have wavefunctions in the form of a plane wave multiplied 

by a function that has the periodicity of the direct lattice. That is,

where k is a wavevector and

for all direct lattice vectors R. 

 This result is known as Bloch's theorem  [F. Bloch, Z. Phys. 52, 

555 (1928)]. 

Felix Bloch (1905-1983)

He gained his doctorate in 1928. His doctoral thesis established the quantum 

theory of solids, using Bloch waves to describe the electrons. He and Edward 

Mills Purcell were awarded the 1952 Nobel Prize for "their development of 

new ways and methods for nuclear magnetic precision measurements.

http://upload.wikimedia.org/wikipedia/commons/0/0b/Felix_Bloch,_Stanford_University.jpg
http://upload.wikimedia.org/wikipedia/commons/0/0b/Felix_Bloch,_Stanford_University.jpg
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Bloch Electrons

- Equation (2.13) : an alternative form of Bloch's theorem. 

- It tells us that the electron wavefunction in any primitive unit cell of the direct lattice

differs from that in any other cell only by the factor exp (ik·R). For real k this represents a 

difference in phase as shown in Fig. 2. 1. 

- We can see that this factor is similar to the expression obtained in (1.14), which was

for all reciprocal lattice vectors K. The wavevector, k, thus has dimensions of reciprocal 

length and belongs in reciprocal space with the vectors K. Let us assume, for instance, that 

some electron wavefunction has a wavevector that is equal to a reciprocal lattice vector. 

or using (2.11) ,

for any value of k and every R in the direct lattice.

- From (2 .10) we also have
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Bloch Electrons

- Let us assume that an electron has a wavevector k given by

where k' is some other vector in reciprocal space. From (2.13) and (2.14) we find that

or the wavefunctions ψk obey Bloch's theorem as if they had wavevector k' . 

-Thus the wavefunction does not have a unique, wavevector k , but a set of wavevectors that 

differ from each other by the set of reciprocal lattice vectors.

From (2.13),

for all R. That is, the electron 

wavefunctions ψK are periodic in 

R.



12

Bloch Electrons

- As indicated in Fig. 2.2, we can define a wavevector uniquely by reducing it with the 

appropriate reciprocal lattice vector to the first Brillouin zone. 

- The prescription for this reduction is as follows. 

- We choose the value of K that will make the point k' lie as close to the origin as is possible. 

Since the value of K can be selected in increments of bi, the primitive vectors, the point k'

can be made to lie closer to the origin than to any other lattice point in reciprocal space. This, 

of course, is the first Brillouin zone. 

- Therefore, we have shown that any wavevector in higher Brillouin zones in reciprocal 

space is equivalent to one in the first Brillouin zone. It is for this reason that the first 

Brillouin zone is to be preferred over other primitive unit cells in the reciprocal lattice.
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Bloch Electrons

Number of allowed values of k in the first Brillouin zone

- This can be determined by introducing boundary conditions at the outer surfaces of the 

crystal. 

- If there are a total of N primitive unit cells of volume 𝛺 in a crystal of volume V so that 

N𝛺 = V, the N unit cells can be divided into Ni unit cells in the directions of the ai primitive 

vectors, i = 1, 2, 3, so that

- Thus the boundary of the crystal in the ai direction is at Ni ai. 

- To avoid standing electron waves we impose a cyclic or Born-von Karman [M. Born and T. 

von Karman, Z. Phys. 13, 297 (1912)] condition at these boundaries,

According to Bloch's theorem (2.13), we have

or
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Bloch Electrons
- Since the ai are real, the k must also be real to satisfy (2.21) . 

- If we define the wavevectors k in terms of the primitive vectors for the reciprocal lattice

bi, we can write

where the components ki are to be determined. 

- By inserting (1.16) for the bi into (2 .22) and (2.22) into (2.21) , we obtain

or

where the mi takes on all integer values . Thus the allowed values of k in reciprocal space are

- From (1.17) the reciprocal lattice vector which defines the reciprocal lattice primitive unit 

cell is

and from (1.20) that the volume of this cell is
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Bloch Electrons

- In a similar manner, the volume of reciprocal space occupied by an allowed value of k is 

defined by

and given as

Therefore,

and since the volume of a 

primitive cell is independent of 

how it is chosen, there are N

allowed values of k in the first 

Brillouin zone. 
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Bloch Electrons

- Since the number of unit cells N in a crystal of volume V is equal to or has the same order 

of magnitude as the number of atoms (1022 to 1023 per cubic centimeter), the number of 

allowed values of k in the first Brillouin zone is quite large and 𝛺k is very small. 

- Because of this it is sometimes convenient to treat reciprocal space and the first Brillouin

zone as a continuum for k values. 

- However, when k is used to index the energy levels in each energy band, it is treated as 

discrete .

- It is interesting to compare the wavevector k for Bloch electrons to the wavevector for free

electrons. From (2.6) we know that for free electrons k is proportional to the electron 

momentum,
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Bloch Electrons

- For Bloch electrons, however, this is not the case. 

- To determine the relationship between p and k for Bloch electrons, we operate on (2 .10) 

with (2.2) to give

which for a periodic potential, is not a constant times the wavefunction.

- Thus ћk is not the momentum of a Bloch electron. It is, nevertheless, useful and 

convenient to define a crystal momentum for Bloch electrons as

We will find in Section 2.8 that this crystal momentum, P behaves as a momentum only for 

externally applied forces. 

- The "real" momentum, p, must take into account the response of the Bloch electrons to 

externally applied forces and the internal periodic potential of the crystal.


