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processing devices.[1–6] However, conven-
tional image recognition systems using a 
flat image sensor array with a multilens 
optical system and the von-Neumann 
computing architecture for processing 
the acquired image data have several 
limitations such as high system-level 
complexity, bulky module size, large com-
puting load, and low energy efficiency.[7] 
Therefore, advanced devices in both image 
acquisition and image data processing are 
required. As a result, bio-inspired imaging 
devices[8–10] (i.e., artificial vision) and neu-
romorphic image processing devices[11–13] 
(i.e., artificial synapse) have received con-
siderable attention (Figure 1).

Bio-inspired imaging devices (e.g., bio-
inspired camera) have been developed 
for image acquisition.[14] Conventional 
imaging devices require bulky and heavy 
optical systems to obtain high-quality 
visual information.[15] In contrast, nat-
ural eyes have a simple and small optical 

geometry and high-quality image acquisition capability.[16,17] 
Therefore, bio-inspired artificial vision has been developed by 
mimicking the unique structural and functional advantage of 
natural eyes[2,6] (Figure  1a). For example, the chambered eye, 
typically found in humans and aquatic animals, exhibits a wide 
field of view, low optical aberration, and facile accommodation 
with a simple optical system.[16,17] The compound eye has dis-
tinctive optical geometries, and such structures offer various 
useful visual features.[18,19]

Neuromorphic computing devices that can efficiently process 
massive image data acquired from the imaging device have been 
developed for image data processing.[20–22] The conventional von-
Neumann architecture, in which the central processing unit and 
memory unit are separated, is not suitable to efficiently process 
the massive unstructured image data.[23,24] Therefore, a novel 
computing device inspired by the human brain (i.e., electronic 
synapse) has been developed[25,26] (Figure  1b). For example, the 
memristor crossbar array can efficiently perform vector multi-
plications.[27] Such a neuromorphic device implements artificial 
neural networks (ANN) in the hardware and enables efficient 
parallel processing of image data with low energy consump-
tion.[25] In a previous study, a device that integrates the synaptic 
device and photodetector in one unit has been reported.[26]

Despite recent progress in the hardware of the neuromor-
phic image data processing devices, such devices still require 

Remarkable technological developments for efficient image recognition (i.e., 
image acquisition and image data processing) have been reported in the past 
decade. Such advances in imaging and image processing technologies have 
driven significant progress in mobile electronics and machine vision applica-
tions. In particular, for image acquisition devices, two types of natural eyes (i.e., 
chambered and compound eyes) have inspired the development of novel multi-
functional imaging devices with unique optical geometries. For image data pro-
cessing devices, novel computing devices based on memristor crossbar arrays, 
such as electronic synapses, have been developed. More recently, the integration 
of imaging and image processing devices in a single unit further enhances the 
system-level efficiency. Herein, such recent advances in the bio-inspired artificial 
vision and neuromorphic image processing devices, aimed at providing efficient 
image recognition, are reviewed. First, various imaging devices inspired by the 
structural and functional features of natural eyes are introduced. Second, artifi-
cial synapses and their operation principles are thoroughly discussed. Third, the 
neuromorphic vision sensor that integrates the imaging and image processing 
devices is reviewed. Finally, a brief summary and future outlook are presented.
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1. Introduction

Recent progress in mobile electronics and machine vision has 
increased the demand for advanced image acquisition and 
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additional image sensors to acquire image information.[5] This 
inevitably introduces high system-level complexity and requires 
data communication.[28] Therefore, integrating an image sensing 
device with a neuromorphic image processing device (i.e., neuro-
morphic vision sensor) has been proposed[29–31] (Figure 1c). The 
neuromorphic vision sensor exhibits light-responsive synaptic 
behavior, such as short-term plasticity (STP), long-term plasticity 
(LTP), and spike-timing-dependent plasticity (STDP).[29] In addi-
tion, by emulating the human visual system, a neuromorphic 
vision sensor that can perform both pre-processing[30] and post-
processing[31] of the image data has been developed.

Herein, we review recent advances in the bio-inspired artifi-
cial vision and neuromorphic image processing devices, which 
aim for efficient image recognition. First, we introduce the bio-
inspired imaging devices that mimic structural and functional 
advantages of natural eyes (i.e., chambered eyes and compound 
eyes). Second, we discuss the artificial synapses (i.e., electronic 
synapses), which are inspired by the image data processing of 
the human brain. Third, we review the neuromorphic vision 
sensor, which integrates the image sensing and neuromor-
phic image data processing devices in a single unit. Finally, we 
briefly summarize the current state of the bio-inspired artificial 
vision and neuromorphic image processing device and present 
their future outlook.

2. Bio-Inspired Artificial Vision System

Modern imaging systems play a vital role in various fields such 
as unmanned drones, autonomous driving, augmented reality, 
and virtual reality.[1,32] There is a need to incorporate additional 
features to these imaging systems, such as a wide FoV, 3D real-
time depth sensing capability, and hyperspectral imaging func-
tion[33,34] (i.e., infrared (IR), visible (vis), and ultraviolet (UV)). 
However, to obtain such features, the conventional imaging 
systems require bulky optics and/or additional complex com-
ponents such as multilens optics, multiple cameras, and color 
filter arrays.[35,36] To address these issues, many systems with 
novel structures that are inspired by intriguing eye structures 
in nature have been reported.[16,17,32,37]

In particular, the curved image sensor array is a remark-
able outcome of mimicking the natural eye.[38] For example, 
the imaging systems inspired by the chambered eyes enabled 
low aberration and high resolution[39,40] (Figure 2; i,ii), and 
those inspired by the compound eyes achieved infinite depth 
of field (DoF) and wide FoV[41–43] (Figure  2; iii,iv). Recently, 
the bio-inspired imaging systems that imitate special features 
and functions of natural eyes, such as optical, photonic, and 
mechanical structures, have been reported.[34,44] For example, 
in the case of chambered eyes, the ball lenses and typical 

Figure 1.  a) Various imaging and image processing devices inspired by the human visual system, such as bio-inspired artificial vision, b) electronic 
synapse, and c) neuromorphic vision sensor. With the pre-processing device, an image with a higher contrast and a lesser noise can be produced. The 
post-processing device extracts features from the pre-processed image data for additional data processing and recognition of the image. a) Reproduced 
with permission.[80] Copyright 2020, Springer Nature (left). Reproduced with permission.[41] Copyright 2013, Springer Nature (right). b) Reproduced 
with permission.[25] Copyright 2017, Springer Nature (left). Reproduced with permission.[26] Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA. 
c) Reproduced with permission.[29] Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.[30] Copyright 2019, Springer 
Nature (center). Reproduced with permission.[31] Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA (right).
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mechanical functions of aquatic organisms[44,45] (Figure 2; v,vi) 
and the telescopic vision of birds[46,47] (Figure 2; vii) have been 
mimicked. In the case of compound eyes, the visual system of 
Xenos peckii for recognizing image depth and enhancing sen-
sitivity[48] (Figure  2; viii) and various optical filters of mantis 
shrimp for distinguishing two similar colors[49] (Figure  2; ix) 
have been mimicked. Therefore, mimicking unique features of 
natural eyes can be a potential solution to overcome the limita-
tions of the conventional imaging systems. This section reviews 
the unique imaging systems that are inspired by various nat-
ural eyes.

2.1. Chambered-Eye-Inspired Artificial Vision

The chambered eye, typically found in humans and aquatic ani-
mals, consists of a curved retina, a gradient-index crystalline 

lens, and a tunable iris.[50–52] Despite its remarkably simple con-
figuration, it exhibits high-performance imaging capabilities[14] 
(e.g., wide FoV, low aberration, and facile accommodation). 
Each optical component of the chambered eye has evolved to 
favor the survival of an organism in its own habitat environ-
ment.[53] For instance, the human eye possesses an aspherical 
crystalline lens with a graded refractive index (GRIN) to com-
pensate for the optical aberrations.[54] In contrast, a spherical 
GRIN lens, which can be found in many aqueous animals, 
enables high-quality underwater vision that collects a pano-
ramic scene with minimum aberrations owing to its spherical 
shape.[55]

One of the main features of the chambered eye is the curved 
retina that facilitates high-resolution imaging with a wide FoV 
and low optical aberrations, while allowing simple configura-
tion of the optical system[53] (Figure 3a). In the past few dec-
ades, various approaches for obtaining artificial curved retina, 

Figure 2.  Various natural and artificial vision systems. a) Picture of human eye. i) Curved image sensor using compressible metal interconnection, 
ii) curved image sensor using soft 2D materials. b) Dragon-fly-eye-inspired vision system. iii) Arthropod-eye-inspired system based on stretchable 
metal connections and elastomeric micro-lenses. iv) One directional wide field of view imaging system using a flexible printed circuit board. c) Vision 
system inspired by aquatic creature eye. v) Elephantnose-fish-inspired vision system for imaging under dim environment. vi) Artificial vision system 
with a monocentric lens inspired by the fisheye. d) Avian vision system. vii) Artificial vision system with 3D-printed micro relay lenses for telescopic 
imaging. e) Superposition type compound eye vision for information sharing. viii) Small-form factor vision system inspired by Xenos peckii. f) Picture 
of mantis shrimp. ix) The scanning electron microscopy image shows the pixelated polarization filter for the mantis-shrimp-eye-inspired vision system. 
b) Reproduced with permission.[43] Copyright 2013, Springer Nature. c) Reproduced with permission.[45] Copyright 2020, Springer Nature. d) Repro-
duced with permission.[47] Copyright 2020, Springer Nature. e) Reproduced with permission.[48] Copyright 2018, Springer Nature. f) Reproduced with 
permission.[114] Copyright 2016, Springer Nature. i) Reproduced with permission.[39] Copyright 2008, Springer Nature. ii) Reproduced with permission.[40] 
Copyright 2017, Springer Nature. iii) Reproduced with permission.[41] Copyright 2013, Springer Nature. iv) Reproduced with permission.[42] Copyright 
2015, National Academy of Sciences. v) Reproduced with permission.[44] Copyright 2015, National Academy of Sciences. vi) Reproduced with permis-
sion.[45] Copyright 2020, Springer Nature. vii) Reproduced with permission.[46] Copyright 2017, American Association for the Advancement of Science. 
viii) Reproduced with permission.[48] Copyright 2018, Springer Nature. ix) Reproduced with permission.[49] Copyright 2017, The Optical Society.
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such as mesh-based pixel array design,[56–58] thin comple-
mentary metal-oxide-semiconductor (CMOS) image sensor 
array,[59,60] and image sensor array fabricated by origami and/or 
kirigami methods[61–64] have been proposed.

For example, Ko et  al. reported an electronic eye that was 
based on a curved silicon image sensor array with an isolated 
pixel design[39] (Figure 3b). Conventional microfabrication pro-
cesses are used to fabricate a passive matrix image sensor array 

Figure 3.  a) Various chambered-eye-type vision systems such as i) human-eye-type and ii) aquatic-eye-type system. b) Illustration of the fabrication 
method for the curved image sensor with compressible metal interconnections. c) Picture of the fabricated curved imaging system. Each pixel con-
sists of a blocking diode and a photodiode (inset). d) Current and voltage curve. e) Metal interconnection for curved image sensor. Serpentine-shape 
metal interconnection (top) shows low density and graphene interconnection improves pixel density (bottom). f) Photograph of the fabricated curved 
image sensor with soft 2D materials such as MoS2 and graphene. g) Induced strain on the curved soft optoelectronics. h) Artificial hemispherical 
vision system with high density photosensitive perovskite nanowires. i) The fabricated artificial eye (left) and the scanning electron microscopy image 
of perovskite nanowires (right). j) Cross-sectional illustration of fisheye-inspired artificial vision system. k) Array of hexagonal pixels that consist of a 
photodetector and a blocking diode (inset) with serpentine metal connections. l) Atomic Force Microscopy image of the texture on the photodetector 
surface. b–d) Reproduced with permission.[39] Copyright 2008, Springer Nature. e–g) Reproduced with permission.[40] Copyright 2017, Springer Nature. 
h,i) Reproduced with permission.[80] Copyright 2020, Springer Nature. j–l) Reproduced with permission.[45] Copyright 2020, Springer Nature. a; i) Repro-
duced with permission.[40] Copyright 2017, Springer Nature. a; ii) Reproduced with permission.[45] Copyright 2020, Springer Nature.
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that consists of silicon photodiodes, current-blocking diodes, 
and electrodes with polyimide encapsulation. Further, the iso-
lated pixels are connected by a compressible metal interconnec-
tion that can endure a compressive strain of >50%[39] (Figure 3b, 
inset). The compressible metal interconnection facilitates trans-
ferring of the planar device to a substrate with a nearly hemi-
spherical shape (Figure 3c, inset, right). Each pixel in the 16 × 16 
image sensor array is composed of two devices: photodetecting 
and blocking diodes (Figure 3c; inset, left). The former detects 
light, and the latter minimizes crosstalk in the passive matrix. 
Hence, under reverse bias, the current–voltage curve of photo-
diode and blocking diode shows a truncated shape (the feature 
of bipolar junction transistor) with a high on/off ratio and low 
leakage currents (Figure  3d). Although the compressive metal 
interconnection allows the fabrication of a curved image sensor 
array, such a mesh design has limitations in achieving the high 
pixel density and high array deformability.[65]

Another strategy to fabricate the curved image sensor is 
to introduce the serpentine-shaped metal interconnection to 
enhance degree of freedom for geometrical structure.[66–72] 
The serpentine-shaped interconnection allows the array to 
be stretchable,[73–79] and thus makes a conformal contact on 
the curved surface (Figure  3e, top). However, this serpentine-
shaped design still has a low pixel density of the array. Several 
researches have been conducted to overcome this issue of low 
pixel density.[59,80] For example, Choi et  al. developed a curved 
image sensor array based on a heterostructure of MoS2 and gra-
phene and used the kirigami method for designing the array[40] 
(Figure 3e, bottom; Figure 3f). The kirigami-based array design 
allows transferring the high-density image sensor array from 
a planar surface to a curvilinear surface while minimizing the 
mechanical stress.[61–64,81–85] Furthermore, the ultrathin and 
soft 2D materials (i.e., MoS2 and graphene) help in preventing 
mechanical fractures of the array on a hemispherical surface. 
The photodetector exhibited high photoabsorption efficiency[40] 
(>5 × 107 m–1), photoresponsibility[40]  ≈2200 A W–1), and frac-
ture strain[40] (≈23%), and the curved image sensor array could 
be conformally integrated on a hemispherical surface with 
small induced strains (Figure 3g).

The 2D fabrication process imposes limitations in terms 
of pixel density when implementing a curved image sensor. 
Therefore, 3D fabrication method is one of the strategies to 
achieve high pixel density on curved surfaces. Several 3D fab-
rication methods have been proposed to directly fabricate pixel 
arrays on a curved platform.[86,87] For example, 3D printing with 
a semiconducting polymer ink was used to fabricate organic 
photodetectors with a 3D geometry.[88] More recently, Gu et al. 
fabricated a dense array of perovskite nanowires on a hemi-
spherical substrate, known as electrochemical eye (EC-EYE), 
using a direct vapor-phase nanowire growth method on a 3D 
platform.[80] The EC-EYE consists of a single lens, an aperture, 
an artificial retina, and liquid metal wirings (Figure  3h). The 
key feature of the EC-EYE is the artificial retina that is com-
posed of a dense array of light-sensitive nanowires[80] (pitch of 
500 nm, density of 4.6 × 108 cm−2) in the pores of an aluminum 
oxide membrane (Figure  3i). Each nanowire mimics a photo-
receptor cell in the human retina. The gallium-indium liquid 
metal wires in flexible polymer tubes, which mimic the human 
nerve fibers, are used for the photocurrent transmission 

between the nanowires and an external current meter. A polydi-
methylsiloxane (PDMS) membrane holds the artificial retina by 
supporting the firm electrical contacts between the nanowires 
and the liquid metal wires. The indium layer between the liquid 
metal and the nanowires enhances the quality of the electrical 
contacts. The EC-EYE has the diagonal FoV of ≈100.1°, which 
can be improved up to ≈130° by optimizing the pixel distribu-
tion on the hemispherical retina.[80]

Meanwhile, an artificial vision inspired by an aquatic animal 
was reported by Kim et  al.[45] The unique optical structure of 
the aquatic eye, such as a monocentric lens brings exceptional 
optical characteristics—deep DoF and panorama FoV. Further-
more, the retractor/protractor muscle of the eye of an aquatic 
animal is also a unique component, which is distinct from that 
of a land creature. The spherical monocentric GRIN lens has 
a short focal length and deep DoF. Different from the human 
eye that relaxes and contracts the ciliary muscle to focus on 
the target object, an aqueous organism uses the retractor/
protractor muscle to move the lens backward and forward 
to adjust the focus. To mimic the monocentric GRIN lens of 
the aqueous vision, a spherical monocentric ball lens is fabri-
cated by integrating an SF16 shell lens and a BK7 hemispher-
ical lens (Figure 3j). As a curved artificial retina, silicon-based 
photodiodes and blocking diodes are arranged in a hexagonal 
mesh that is interconnected by the serpentine-shaped metal 
lines (Figure  3k). The mesh array design with the serpentine 
interconnections helps in reducing the induced strain in the 
array that is mounted on a hemispherical substrate.[89–102] As 
aquatic creatures have elongated rod cells for high light sensi-
tivity under the sea, the silicon photodiodes have nanotextures 
that can increase the light absorption efficiency of each photo-
diode by reducing the reflection and increasing the absorption 
(Figure 3l).

2.2. Compound-Eye-Inspired Artificial Vision

The compound eyes, which can be categorized into apposi-
tion and superposition types, consist of an array of hundreds 
of thousands of ommatidia. Each ommatidium—a minimal 
optical sensing unit—comprises a facet lens, crystalline cone, 
light-guiding rhabdom, and photoreceptor cells.[103,104] Unlike 
the chambered eye, where the photoreceptor is settled on a 
concave geometry, the compound eye has a photoreceptor array 
on a convex geometry.[16,17] Owing to such an array configura-
tion of multiple optical units (i.e., ommatidia), the compound 
eye exhibits the infinite DoF, wide FoV, fast object detection 
capability, and full-color 3D sensing capability.[16,17] With the 
advances in novel nanofabrication methods, the fabrication of 
the advanced imaging systems that mimic exceptional optical 
features of the compound eye has been achieved.
Figure 4a shows five types of compound eye in nature: 

i)  apposition, ii) neural superposition, iii) refracting superpo-
sition, iv) reflecting superposition, and v) parabolic superposi-
tion. Each type of compound eye is found in various species 
of insects based on their natural habits[103,104] (i.e., diurnal and 
nocturnal habits). The apposition-type compound eyes are com-
monly found in diurnal insects, which act effectively under 
abundant light conditions. In contrast, nocturnal insects, which 
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inhabit under dim light conditions, generally have superposi-
tion-type compound eyes. Since each adjacent ommatidium 
in the superposition-type compound eye shares the same light 
information, the light sensitivity in this case can be improved.

Several compound-eye-type artificial visions have been devel-
oped to exploit the advantages of the compound eye such as 

minimal optical aberration, extremely wide FoV, infinite DoF, 
and compact configuration. Novel microfabrication techniques 
allow the implementation of microlens array (MLA) and black 
pigments on the conventional image sensor to fabricate the arti-
ficial ommatidium.[103] However, the planar configuration of the 
conventional image sensor array restricts the implementation 

Figure 4.  a) Various compound-eye-type vision systems. i) Apposition type, ii) Neural superposition type, iii) Refracting type, iv) Reflecting type, and 
v) Parabolic type. b) Illustration of wide field-of-view compound eye system using a flexible printed circuit board. c) The result of the optical flow 
method for the roll motion and linear translation. d) Transient response and steady-state response with the auto-adaptation function. e) Illustration 
of the elastomeric microlens array and stretchable electronics for the compound-eye-type artificial vision. f) Illustration of the curved apposition-type 
artificial vision. Each microlens limits the acceptance angle. g) Experimental result of the wide field-of-view imaging. h) Light field camera system with 
the metalens array for light information sharing (top) and scanning electron microscopy images of the metalens (bottom). i) Achromatic character-
istics of the fabricated metalens array. j) Captured image with the light field camera system. k) Ultra-thin compound eye camera. l) Illustration of the 
microprism system for wide field-of-view. m) Black SU-8 aperture for removal of the optical crosstalk. n) Obtained image with the ultrathin compound 
eye camera. b–d) Reproduced with permission.[42] Copyright 2013, National Academy of Sciences. e–g) Reproduced with permission.[41] Copyright 2013, 
Springer Nature. h–j) Reproduced with permission.[112] Copyright 2019, Springer Nature. k–n) Reproduced with permission.[48] Copyright 2018, Springer 
Nature. i–v) Reproduced with permission.[104] Copyright 2016, Springer Nature.
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of the full panoramic FoV of the compound eye.[18,19,105–107] 
In this aspect, one of the major challenges in fabricating the 
compound-eye-type imaging devices is to achieve a high curva-
ture in various imaging elements (i.e., photodiodes array, pho-
totransistors array, and MLA fabricated on a highly curved 3D 
substrate).

One strategy to realize a curved photodetector array is to use 
a flexible printed circuit board (FPCB). The photodiodes on the 
FPCB allow various shape deformations and resultant varia-
tions in the FoV.[108] Moreover, the CMOS image sensors can be 
sliced and integrated on the FPCB to fabricate the curved artifi-
cial compound eye[42] (CurvACE). Such a CurvACE can achieve 
a wide 1D FoV (Figure 4b). The main goal of the CurvACE is to 
achieve the fast object detection and the extraction of motion 
information with the optical flow method (Figure  4c; i,ii). In 
addition, the auto-adaptation function can be used to keep the 
photodetectors responsive toward relative brightness changes 
even under intense ambient lighting conditions (Figure  4d). 
The prototype of the CurvACE[42] consists of 630 photodiodes 
with a vertical FoV of 60°.

To overcome the limited FoV, the serpentine-shaped stretch-
able metal interconnection was utilized to fabricate an artifi-
cial hemispherical compound eye with a fully hemispherical 
FoV[41] (Figure 4e). A passive matrix silicon image sensor array, 
which consists of photodiodes and blocking diodes, was inter-
connected by the serpentine metal electrodes. The optical sub-
system is composed of a PDMS MLA and a light-screening 
layer. Although the FoV of an individual pixel is limited by the 
acceptance angle, the hemispherical configuration of the pixels, 
including the microlenses, can offer a wide FoV (Figure 4f). For 
the artificial compound eye, the experimental results prove the 
imaging capability with a wide hemispherical FoV[41] (=160°) 
(Figure  4g). This apposition-type compound eye also features 
individualized imaging, low optical aberrations, and almost 
infinite DoF.

Meanwhile, the superposition-type compound eyes also have 
attractive optical characteristics such as high light sensitivity, 
depth sensing capability, and high dynamic range.[16,104] The 
refracting, reflecting, and parabolic superposition type can col-
lect light using the adjacent optical units, which enhances the 
light sensitivity even under a dim environment. For example, 
Huang et  al. reported micro-square tubes with reflecting side-
walls inspired by the reflecting superposition-type compound 
eye found in decapods such as shrimps, lobsters, and cray-
fish.[109] Furthermore, the ommatidia of the superposition-type 
compound eye share the object information such as position, 
color, and intensity, which enables the recognition of the depth 
information. The shared FoV of multiple ommatidia is similar 
to the principle of a light field camera[110] (Figure 4h, top). How-
ever, images from a single microlens in the superposition-type 
compound eye inherently undergo achromatic and spherical 
aberrations. Therefore, Lin et  al. replaced the conventional 
microlens with a metalens that can capture a broadband achro-
matic image with no spherical aberration[111] (Figure 4h, bottom; 
Figure  4i). Among the dielectric materials used in the met-
alens, GaN has advantages such as lower manufacturing cost 
and higher efficiency than silicon and titanium oxide. A single 
achromatic metalens consists of more than 9000 GaN nanoan-
tennas, and it is fabricated using electron beam lithography, 

several transfer processes, and etching processes. An imaging 
system with field-sharing characteristics, which is the main fea-
ture of the superposition-type compound eye, exhibits low chro-
matic aberration and no spherical aberration (Figure 4j).

To mimic the neural superposition-type compound eye, 
an MLA was integrated with a wafer-level camera without a 
main optical system. The MLA allows achieving an accept-
able sensitivity and integrating the aperture-stacked struc-
tures with minimal optical crosstalk.[8] For example, Kim et al. 
reported a Xenos peckii-eye-inspired ultrathin digital camera[48] 
(Figure  4k). The ultrathin digital camera is equipped with a 
microprism array that refracts light from wide viewing angles 
to achieve a wide FoV, a light-blocking structure and aperture 
that minimize optical crosstalk between the adjacent channels, 
and an MLA that focuses light on the CMOS image sensor 
(Figure  4l). The main element of the ultrathin digital camera 
is the concave microprism array. Owing to the microprism 
array, the ultrathin digital camera features a FoV of 68° with a 
device thickness of 1.4 mm. A light-screening structure is fabri-
cated by a capillary filling method using black epoxy (e.g., SU-8) 
(Figure 4m). For high-resolution imaging, the images that were 
originally captured from the microprism arrays were recon-
structed using a super-resolution method (Figure 4n).

2.3. Artificial Vision Inspired by the Photonic Structures 
of Natural Eyes

Diverse structures of natural eyes have inspired novel devices 
for the artificial vision with unique features such as low optical 
aberration, excellent focusing capability, wide FoV, deep DoF, 
and small module sizes.[112] Recently, thorough analyses on 
the extraordinary photonic structures of natural eyes, such 
as the orthogonal microvilli of mantis shrimp, layered retina 
of jumping spider, crystalline microcups with reflecting 
photonic crystal sidewalls of elephant nose fish, and tapetum 
lucidum of ommatidia of morpho butterfly, have encouraged 
further researches on bio-inspired artificial vision[34,37,113,114] 
(Figure 5a; i–iv).

Mantis shrimp has one of the most complex and distinct 
optical systems among the variety of natural eyes. It can detect 
16 multispectral wavelengths, two circular polarized lights, and 
four linear polarized lights[49,115] (Figure  5b). The individual 
photoreceptors of the mantis shrimp have a logarithmic pho-
toresponse;[115] hence, each photoreceptor can distinguish light 
intensity levels even under strong ambient light conditions. 
Garcia et  al. demonstrated a mantis shrimp-inspired CMOS 
image sensor array with pixelated polarization filters. In this 
CMOS image sensor array, 2 × 2 pixelated polarization filters 
with an offset of 45° are repeated across the pixel array for 
the detection of the polarized light (Figure  5c). An individual 
pixel has a polarization filter which is composed of aluminum 
nanowires with a duty cycle of 50% in dimensions of 250 nm × 
75 nm. For imaging with a high dynamic range, the photodiode 
is designed to operate in a forward bias mode, unlike con-
ventional photodetectors that operate in a reverse bias mode.  
The customized pixel follows a logarithmic photoresponse like the 
photoreceptors in the mantis shrimp eye (Figure 5d). Therefore, 
the mantis shrimp-inspired image sensor array can provide the 
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high dynamic range (≈94.3 dB) imaging (Figure 5e, right) and 
also detect polarized light (Figure 5e, right).

Depth sensing is an important function in augmented and 
virtual reality applications. To obtain depth information with 

Figure 5.  a) Diverse optical and photonics structure for multifunctional imaging in the nature eye: i) polarization sensing, ii) depth sensing, iii) multi-
spectral imaging, and iv) light enhancing system. b) Polarization filter (bottom) in the mantis shrimp ommatidia. c) Scanning electron microscopy 
image of the fabricated polarization filter. d) Graph of digitized intensity and photon flux. e) The image obtained by the device shows the high dynamic 
range and polarization sensitive characteristics. f) Illustration of the depth perception mechanism of jumping spider. The layered retina captures two 
images which have different focal length. g) Concept of a proposed method for the alternative depth sensing inspired by jumping spider. h) Two defo-
cused images, which can generate a depth map. i) Optical filter (right) for wavelength selection in Morpho butterfly (left). j) Fabricated multilayered film 
for the Infrared filter on the CMOS image sensor. k) Captured image without the optical filter (top) and with a bio-inspired filter (bottom). l) Illustra-
tions that describe features of the elephantnose fish retina, which has a micro mirror cup for imaging under dim environment. m) Proposed artificial 
micro cup for light guiding and trapping. n) Original image (top-left), captured image without micro mirrorcup (top-right), and captured image with 
micro mirrorcup (bottom). b–e) Reproduced with permission.[49] Copyright 2017, The Optical Society. f–h) Reproduced with permission.[33] Copyright 
2019, National Academy of Sciences. i–k) Reproduced with permission.[34] Copyright 2018, The Optical Society. l–n) Reproduced with permission.[44] 
Copyright 2015, National Academy of Sciences.
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a conventional imaging system, additional information (i.e., 
perspective and motion) or additional optical components (i.e., 
structured light and stereo vision) are required.[116,117] Further-
more, optical defocusing that determines the depth has been 
demonstrated to reduce the amount of depth computation.[7,118] 
Similarly, the layered retina of a jumping spider proposes a 
novel depth perception method by capturing two different 
focused images with a single imaging device.[37] Considering the 
focusing mechanism of the human eye, it can detect an object 
only at one focused distance; however, the eye of a jumping 
spider can detect objects in different focal planes (Figure  5f). 
Hence, the jumping spider can obtain depth information with 
a single eye. Guo et al. developed a jumping-spider-eye-inspired 
metalens—a phase plate designed to focus light[33] (Figure 5g). 
The metalens is designed to incorporate the phase profiles of 
two off-axis lenses with different in-focus distances on a shared 
aperture. As a result, two differently defocused images can be 
captured simultaneously with a single shot (Figure  5h). The 
depth information can be extracted by computing the point 
spread function with two different focal plane images. The pro-
totype of the depth sensor using a millimeter-scale metalens 
produces the depth value over a range of 10  cm with a single 
measurement.

In multispectral imaging, the images that are within certain 
wavelength ranges are captured. The wavelength can be sepa-
rated by filters or by instruments that are sensitive to specific 
wavelengths (i.e., vis, IR, and UV). Garcia et  al. developed a 
high-resolution multispectral imaging device using a photonic 
crystal structure that was inspired by the eye of a morph but-
terfly[34] (Figure 5i). The tapetal structure, which is comprised of 
alternating stacked layers of air and cytoplasm, functions as an 
interference filter. To mimic this tapetal structure, the thin films 
of SiO2 and TiO2 were alternatively deposited on a customized 
CMOS image sensor array, which generated photocurrent in the 
near-IR (NIR) and vis light regions (Figure  5j). The individual 
filters were optimized to accomplish 60% and 80% transmis-
sions[34] of the vis and NIR lights, respectively. The image sensor 
was demonstrated by imaging a 4T1 breast cancer model under a 
surgical light illumination of 60 kLux and a laser light excitation 
power[34] of 5 mW cm−1[2] at a wavelength of 785 nm, which con-
firms its multispectral imaging capability (Figure 5k).

Most of the scotopic vision systems still adhere to the elec-
tronic amplifying method. However, the elephant nose fish 
adopts a different amplifying approach, a microoptical method 
to enhance its light detection performance. The retina of the 
elephant nose fish utilizes the microcups with reflecting 
photonic crystal sidewalls to collect and amplify the incident 
light (Figure 5l). Liu et  al. demonstrated an optical strategy to 
improve the ability to collect light for imaging in low-intensity 
light[44] (Figure  5m). Each microcup is a glass microstructure 
with two opposite facets enclosed by four parabolic sidewalls 
that are coated with reflecting aluminum (Figure  5n). The 
incoming light from the large facet (input port) is concentrated 
on the small facet (output port) by a sidewall, thereby increasing 
the light intensity. A conventional image sensor with the bio-
inspired nano-micro structure can detect additional light infor-
mation. The novel bio-inspired artificial visions reviewed in this 
section have provided many new opportunities for the develop-
ment of next-generation multifunctional imaging systems.

3. Neuromorphic Image Processing Devices

The image data acquired by the image sensor array can be pro-
cessed for the recognition of a specific object in the image. This 
back-end image processing technology has shown a rapid pro-
gress with the advent of novel applications of image sensors, 
including machine vision.[31] For example, the implementation 
of deep learning algorithms using an ANN has achieved sig-
nificant success in terms of processing the unstructured image 
data.[28] However, the conventional von-Neumann architecture, 
in which the central data processing unit and memory unit 
are physically separated,[23,24] is not optimal for processing the 
massive image data that are acquired from an external image 
sensor[26] (Figure 6a). This has resulted in the development 
of a neuromorphic computing architecture based on synaptic 
devices that are inspired by human brain.[119] Such electronic 
synapses have an appropriate device structure for parallel pro-
cessing of massive unstructured data (i.e., electrical signals) 
obtained from the image sensor[120] (Figure 6b). More recently, 
a novel concept of the neuromorphic device that integrates the 
synaptic and photodetecting functions in a single unit (a neuro-
morphic vision sensor) has been proposed[5,29–31] (Figure 6c). In 
this chapter, we review these neuromorphic image processing 
devices such as the electronic synapses and neuromorphic 
vision sensors. The important technological advances in the 
electronic synapses and neuromorphic vision sensors along 
with their detailed specifications such as device type, array size, 
and main features are summarized in Table 1.

3.1. Electronic Synapse

The memristor is a two-terminal device, and its resistance state 
depends on the history of current passed through the device.[11] 
The memristor can be applied to artificial intelligence (AI) in 
the form of in-memory computing for eliminating the von-
Neumann bottleneck and to deep-learning accelerators for 
implementing vector-matrix multiplication.[119] When the 
memristor is fabricated into a crossbar array (i.e., electronic 
synapses), it can efficiently compute a large amount of vector-
multiplication tasks using its programmable conductance. This 
resembles the working mechanism of the network of biological 
synapses in a human brain.[121] Such a memristor crossbar 
array has been a successful hardware implementation of the 
ANN and has shown unique advantages in the processing of 
the massive unstructured image data.[24] Furthermore, the elec-
tronic synapse has a simpler system configuration than the 
conventional processing system[122] (Figure 6b; i).

Despite recent advances in the memristor such as resistive 
random-access memory (RRAM), there are remaining tech-
nological challenges, such as poor CMOS compatibility,[123] 
crosstalk issue between memristors in the array,[124] and dif-
ficult bidirectional analog resistance modulation,[124] that have 
hindered the development of a large-area array of the mem-
ristor for the neuromorphic computing.[24,123,124] Recently, sev-
eral researches to address these issues have been conducted 
and the corresponding studies have been reported.[24,123,124] For 
example, using a fully CMOS compatible fabrication process, 
conductive metal oxide with stable switching characteristics, 
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and integrating transistors, a high-density and large-scale 
RRAM array with an improved bidirectional analog switching 
capability can be developed.[124]

For example, Yao et al. developed a neuromorphic device with 
a structure of one transistor and one resistive memory[124] (i.e., 
1T1R). Further, an array of 1024 cells with 128 rows and 8 col-
umns was fabricated using this device structure (Figure 7a). 
The device exhibited symmetrical I–V curves (Figure  7b) and 
bidirectional conductance changes in response to the pulsed 
voltage inputs (i.e., set and reset operation) (Figure 7c), which 
is ideal for the efficient neuromorphic computing and pattern 
classification. Two operation schemes (i.e., with and without 
write-verify operation) were analyzed, exhibiting trade-offs in 
terms of converging speed, recognition accuracy, and energy 
consumption (Figure  7d). With the write-verify operation that 
can reduce the resistance variation between each cell, a system 
with a faster recognition speed, higher recognition accu-
racy, and lower energy consumption can be demonstrated. In 

contrast, without the write-verify operation, although the rec-
ognition rate is slightly lower, the system operation could be 
simplified. In both the schemes, a remarkably lower energy 
consumption was achieved compared to a conventional system 
using the Intel Xeon Phi processor.

For the stable and uniform operation of the memristor 
crossbar arrays, individual switching element or external wiring 
are required; however, it can hinder the realization of high-
density neuromorphic networks. In this context, a device-level 
improvement can be helpful for implementing high-density 
memristor crossbar arrays. Prezioso et  al. reported a tran-
sistor-free memristor crossbar array[125] (12  × 12) (Figure  7e,f). 
The memristor consists of stacked oxide films (Al2O3/TiO2−x) 
(Figure 7g inset) and shows non-linear I–V curves (Figure 7g). 
The device showed an on/off ratio of >104, high nonlinearity, 
a switching endurance of >5000 cycles, and an estimated 
memory retention of >10 years at room temperature. The mem-
ristor crossbar array, which is a high-density neural network 

Figure 6.  a) Block diagram of the image processing flow using the conventional image sensor and the conventional von-Neumann architecture. 
b) Block diagram of the image processing flow using the electronic synapse based on the i) memristor crossbar array, or ii) the synaptic device and 
photodetector. c) Block diagram of the image processing flow using the neuromorphic vision sensor based on the i) pre-processor, or ii) the post-processor.
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(NN) capable of bidirectional conductance changes, can imple-
ment the single-layer perceptron. For example, the 3 × 3 black 
and white input patterns were classified into three letters (“z,” 
“v,” and “n”) through analog vector-matrix multiplications. The 
output signals of the target letters were larger than those of the 
other letters (Figure 7h).

As another practical machine vision application, Sheridan 
et al. applied a WOx-based memristor crossbar array (Figure 7i) 
to the implementation of the sparse coding for the efficient 
feature extraction in the object recognition process.[25] The 
desired conductance states can be programmed by redistrib-
uting ions in the WOx memristor (Figure 7j). Furthermore, the 
matrix operation of the 32 × 32 crossbar array can be achieved 
by the Kirchhoff’s law (Figure 7k). Using the trained dictionary 
elements, the input greyscale image (Figure  7l) can be recon-
structed with the reduced complexity (Figure 7m). In particular, 
a 4 × 4 patch that is a part of the original image can be clearly 
reconstructed with the increasing iteration number (Figure 7n). 
Moreover, the same procedure can be applied to other parts of 
the image for the complete reconstruction of the image. The 
successful hardware implementation of the sparse coding algo-
rithm was confirmed.

When the synaptic devices are directly connected to the 
image sensors in one chip, the chip-to-chip communication 
can be replaced with the device-to-device communication.[120] 
Therefore, since the electrical signals from the photodetectors 
can be transported to the synaptic device by the intra-chip com-
munication, the data communication speed can be significantly 
enhanced[120,126] (Figure 6b; ii). In addition, when the synaptic 
device is combined with the photodetector, diverse optical sig-
nals such as the incident light with various intensities or colors 
can be used as input parameters for the synaptic device.[26,120] 
The output electrical signals from the photodetectors can be 
used as the input signals for the synaptic devices.[126]

For example, Wang et  al. realized such a device concept 
by integrating a ferroelectric synaptic device with a photode-
tecting element[126] (Figure 8a,b). The top-gated three-terminal 
synaptic device consists of P(VDF-TrFE)/P(VP-EDMAEMAES) 

as a dielectric layer and P(IID-BT) as a channel material. The 
tow-terminal photodetecting device, connected in series with 
a phthalocyanine load resistor, consists of PTCDI-C8/VOPc as 
a photoabsorbing layer. The gate voltage of the synaptic device 
is regulated by the voltage divider circuit of the photodetecting 
device and the load resistor. Three kinds of synaptic plasticity, 
such as STP, LTP, and ferroelectric-LTP, were demonstrated. 
The gate voltage (Vg) was modulated according to the wave-
length, intensity, and frequency of the incident light. The STP 
behavior is observed when Vg is lower than the coercive voltage 
(Vc). More frequent voltage pulses lead to more electrochemical 
doping, which corresponds to the electrochemical-LTP. When 
Vg exceeds Vc, the ferroelectric-LTP is achieved. The postsyn-
aptic current of the ferroelectric-LTP lasts longer than that of 
the electrochemical-LTP. The ultra-flexibility of a light-triggered 
organic neuromorphic device (LOND) enables the device to 
conformally attach on a hemispherical surface (Figure  8c). In 
the case of green light spikes that trigger the ferroelectric char-
acteristics, the LOND exhibits the LTP, in which 65% of the 
original input signal is maintained for 1800 s (Figure 8d).

A similar voltage dividing strategy but a different device 
structure made of different materials was reported by Kwon 
et  al. They demonstrated the environment-adaptable visual 
perception using a synaptic device with a photodetector.[26] The 
device consists of an IGZO-based load transistor, a CdSe-based 
photosensor, and an IGZO-based ionotronic synaptic transistor 
(Figure 8e). The ionotronic synaptic transistor has a gate dielec-
tric layer that consists of a sodium (Na)-incorporated aluminum 
oxide solid-state electrolyte. When the photodetector is irradi-
ated with light, its channel resistance decreases by three orders 
of magnitude compared to the dark state, thereby resulting 
in increased bias spike (Vspike). The bias spike Vspike is calcu-
lated as Vspike  = VDrain⋅Rload/(Rphotosensor+RIoad). If a small Vspike 
is applied to the synaptic device, mobile Na+ ions move to the 
interface between the channel and the dielectric layer. As a 
result, electrons are induced in the channel, and an excitatory 
postsynaptic current (EPSC) is generated. However, the cur-
rent disappears in 5 s due to rapid backward diffusion of the 

Table 1.  Specifications of various neuromorphic devices in terms of the device type, device configuration, array size, and their main features.

Device type Device configuration Array size Main features Ref.

Electronic synapse TiN/TaOx/HfAlyOx/TiN 128 × 8 Face classification [124]

Pt/Ti/TiO2-x/Al2O3/Pt/Ta 12 × 12 Pattern classification [125]

W/WOx/Au/Pd 32 × 32 Sparse coding [25]

Organic heterojunction photosensor +  
Ferroelectric dielectric/organic FET

5 × 6 Ultra-flexible, color-perception [126]

CdSe photosensor + a-IGZO TFT 3 × 3 Environment adaptation [26]

h-BN/WSe2 +h-BN/WCL/WSe2 Single pixel Color mixed pattern recognition [120]

Neuromorphic vision sensor a-IGZO TFT Single pixel Major synaptic functions [29]

a-IGZO TFT Single pixel Pattern recognition [131]

Graphene-perovskite QD FET Single pixel Facial recognition [132]

Pd/MoOx/ITO ORRAM 8 × 8 Pattern recognition [30]

MoS2 phototransistor 31 pixels Curved image sensor, pattern recognition [28]

MoS2 phototransistor 32 × 32 Pattern recognition [31]

WSe2 phototransistor 3 × 3 Classifier, autoencoder [130]
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Na+ ions, which corresponds to the STP (Figure 8f). If Vspike is 
large, electrochemical doping occurs, generating a long-lasting 
current, which corresponds to the LTP (Figure 8g). A 3 × 3 array 
of the device was used to demonstrate the adaptation of the 

human eye to strong and weak lights (i.e., photopic and sco-
topic adaptation) (Figure 8h).

In another example, a synaptic device with a photodetector 
(Figure  8i) was used in the pattern and color recognition 

Figure 7.  Electronic synapses based on the memristor crossbar array. a) The micrograph of the 1024-cell-1T1R array for face classification. b) I–V charac-
teristic curve of a 1T1R device for the SET and RESET process. The inset shows a cross-sectional transmission electron microscope (TEM) image of the 
device. c) Conductance change behavior under a series of SET and RESET cycles. d) Comparison between with (w/) and without (w/o) the write-verify 
operation in terms of latency, energy consumption, and accuracy. e) Schematic circuit diagram of the memristor crossbar array for pattern classification. 
f) 12 × 12 memristor crossbar array based on Al2O3/TiO2−x stacks. g) I–V characteristic curve of a memristor device for the SET and RESET process. The 
inset shows a cross-sectional view of the device. h) Experimental results of pattern classification tasks. i) Scanning electron microscope (SEM) image of 
the memristor crossbar array for sparse coding. j) Schematic illustration of the memristor crossbar array. k) 32 × 32 programmed chequerboard pattern 
with a patch size of 2 × 2. l) Original image for the image processing task using the memristor crossbar array. m) Reconstructed image. n) Graph that 
shows membrane potentials of the synaptic device as a function of the iteration number. a–d) Reproduced with permission.[124] Copyright 2017, Springer 
Nature. e–h) Reproduced with permission.[125] Copyright 2015, Springer Nature. i–n) Reproduced with permission.[25] Copyright 2017, Springer Nature.
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tasks.[120] The photodetecting device that consists of a hetero-
structure of h-BN and WSe2 converts the optical signals (i.e., 
red (λ = 655 nm), green (λ = 532 nm), and blue (λ = 405 nm)) 

into the pre-synaptic electrical signals. Further, the pre-syn-
aptic electrical signals control the postsynaptic current of the 
synaptic device (Figure  8j). The top surface of the h-BN layer 

Figure 8.  Electronic synapse integrated with the photodetector. a) Schematic circuit diagram of an ultra-flexible light-triggered organic neuromorphic 
device (LOND) for color-perception. b) Schematic 3D illustration of LOND. c) Photograph of the LOND array transferred to a hemisphere. Scale bar, 
7.5 mm. d) Current signal after 1800 s, showing the ferroelectric-LTP behavior of the LOND array triggered by a green-light. e) Schematic circuit diagram 
of a light-adjustable optoelectronic neuromorphic device array. f,g) EPSC dynamics of the synaptic transistor with f) Vspike = 1 V and g) Vspike = 2 V. 
h) The photopic adaptation (top) and scotopic adaptation (bottom) which emulate the human visual perception system. i) Schematic circuit diagram 
of an optic-neural synapse (ONS) for the recognition of color-mixed patterns. j) Schematic illustration of the optical-sensing device based on h-BN/
WSe2 and synaptic device based on h-BN/WCL/WSe2. k) Conductance change behavior as a function of the pulse number under light of different colors. 
l) Numeric pattern images for the training and testing datasets consisting of single-color digits and mixed-color digits, respectively. m) Conventional 
neural network based on synaptic devices (left) and optic-neural network based on ONS devices (right). n) Recognition rate of neural network (NN) 
and optic-neural network (ONN) as a function of the number of training epochs. a–d) Reproduced with permission.[126] Copyright 2018, Wiley-VCH 
Verlag GmbH & Co. KGaA. e–h) Reproduced with permission.[26] Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA. i–n) Reproduced with permis-
sion.[120] Copyright 2018, Springer Nature.
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is treated by O2 plasma, which serves as a weight control layer 
(WCL). The applied voltage pulses result in electron trapping at 
the WCL-WSe2 interface. Such trapping and de-trapping mech-
anisms enable the linear weight change, while maintaining the 
stable conductance state (Figure  8k). Using the device param-
eters extracted from the training (Figure 8l left), the color and 
pattern or the color-mixed pattern (Figure  8l, right) were suc-
cessfully recognized. The performance, in terms of recognition 
accuracy, of the synaptic device with a photodetector (i.e., 
optical NN; ONN) was compared to that of a conventional NN 
(Figure 8m). With the same training epochs, the success rate of 
the ONN was higher than that of the NN (Figure 8n).

3.2. Neuromorphic Vision Sensor

Despite recent progresses in the neuromorphic devices, the elec-
tronic synapses still require additional image sensors to acquire 
raw image data and perform image-based processing tasks. 
This inevitably causes the system-level complexity and signifi-
cant amount of data communication.[30] Further, processing raw 
image data requires a significant amount of computing, which 
consumes large amounts of energy and time.[28] Therefore, for 
fast processing and low power consumption, it is required to 
reduce the size of the raw image data.[127–129] Thus, the approach 
to integrate the photodetectors and neuromorphic devices as a 
single device has been proposed for high-efficiency and high-
speed data processing.[28–31] Such an integration also helps in 
miniaturizing the size of the machine vision system. Such 
devices are called neuromorphic vision sensors (Figure 6c).

There are two types of neuromorphic vision sensors. One is 
the neuromorphic vision sensor that generates pre-processed 
electrical signals, which can be sent to the post-processing unit 
for image recognition[28,30] (Figure  6c; i). The pre-processed 
electrical signals require significantly less computation load in 
the post-processing unit than the unprocessed raw image data; 
hence, the entire processing efficiency, in terms of the computa-
tion load and processing time, can be increased.[28,30] The other 
is the neuromorphic vision sensor that performs the optical 
sensing and post-processing in one device[31,130] (Figure 6c; ii). 
In contrast to the neuromorphic vision sensor with only a pre-
processor, a neuromorphic vision sensor equipped with post-
processor can self-process the image recognition.[31,130] This can 
reduce the system-level complexity, minimize the amount of 
data communication, and eventually enhance the efficiency of 
the entire image recognition process.

As a sample device that could emulate the synaptic behav-
iors responsive to the optical input pulses, a photon-triggered 
neuromorphic device based on amorphous oxide semiconduc-
tors (AOSs) has been reported.[29] The AOS absorbs UV light, 
and the two-terminal device has a persistent photoconductivity 
under UV irradiation. The unique feature of this device is that 
the decay time of the photocurrent is long; hence, its photo-
conductivity can last over an extended period of time. Such a 
persistent photoconductivity is due to the excess carrier genera-
tion caused by the photo-induced ionized oxygen vacancies (i.e., 
VO+ or VO2+) (Figure 9a). Photon-triggered neuromorphic cur-
rent responses (STP and LTP) can be obtained by controlling 
the photon energy and the frequency of the optical input pulses 

(Figure  9b,c, respectively). Furthermore, the STDP was con-
firmed by two synaptic devices connected in series (Figure 9d). 
The connection strength between the adjacent devices increased 
with the decreasing time interval between the pre-synaptic and 
postsynaptic currents. The symmetrical shape of STDP char-
acteristics was observed, which plays an important role in the 
learning and memorizing functions of the device.

In addition, analog synaptic potentiation and depression can 
be achieved by employing the combined stimulation of elec-
trical voltage and optical pulses. Using the same AOS mate-
rials, but a different device structure, Duan et  al. reported a 
three-terminal amorphous IGZO thin-film phototransistor[131] 
(Figure  9e). The device uses both the electrical voltage and 
optical pulses for the modulation of drain current. The cur-
rent response was similar to the typical synaptic devices, which 
emulates the synaptic potentiation and depression as well as the 
major synaptic functions (i.e., STP and LTP) (Figure  9f). The 
optical pulse increases the current (i.e., EPSC), while the elec-
trical pulse decreases the current (i.e., inhibitory postsynaptic 
current) (Figure  9g). A convolutional NN (CNN) was applied 
to the device for pattern recognition in the MNIST benchmark 
dataset. The recognition accuracy of the synaptic device reached 
95.99%, which is comparable to that of the numerical simula-
tion (i.e., 98.69%) (Figure 9h).

Instead of oxide thin films, Pradhan et al. developed a photo-
sensitive neuromorphic transistor using organic-inorganic halide 
perovskite quantum dots (PQDs) and graphene[132] (Figure  9i). 
The structure of graphene-PQDs promotes efficient charge gen-
eration by PQDs and excellent charge transport by graphene, 
thereby resulting in high responsivity and detectivity of 1.4 × 
108 AW−1 and 4.72 × 1015 Jones, respectively, at 430 nm.[132] The 
photon-triggered memory effect based on the number of input 
optical pulses was also characterized, and the synaptic current 
responses such as STP (Figure  9j) and LTP (Figure  9k) were 
observed. Long-term depression can be also generated by applying 
electrical pulses (Figure  9l). The neuromorphic phototransistor 
array can be applied in facial recognition (Figure 9m). The syn-
aptic device generated the synaptic weight of each pixel in the 
form of a conductance state. When the summation of the post-
synaptic currents exceeds the threshold, the output spike signal is 
generated. The synaptic weights are updated by the training and 
learning algorithms, and eventually, the features extracted from 
the original input images were obtained (Figure 9n).

Based on these photon-triggered synaptic characteris-
tics, neuromorphic vision sensors that can perform both 
the imaging and pre-processing of the acquired image data 
were developed. For example, Zhou et  al. developed a neuro-
morphic vision sensor based on the optoelectronic RRAM [30] 
(ORRAM). A simple two-terminal structure of Pd/MoOx/ITO 
(Figure 10a) exhibited light-tunable non-volatile switching char-
acteristics between the high-resistance state (HRS) and low-
resistance state (LRS) (Figure  10b). When the MoOx thin film 
in the HRS is irradiated with UV light, protons (H+) are gen-
erated by the reaction between the photogenerated holes and 
the water molecules in the MoOx thin film to form HyMoOx, 
which changes the resistance state of the device from the HRS 
to the LRS (Figure 10c, left). When an electrical field is applied 
to the device, the protons drift from the MoOx thin film to the 
Pd electrode, which returns the resistance state of the device to 
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the HRS from the LRS (Figure  10c, right). Using this mecha-
nism, the original image could be pre-processed into an image 
with higher contrast and lesser noise (Figure 10d). The pre-pro-
cessed image was sent to the post-processing unit. The image 

recognition with ORRAM showed a higher accuracy than that 
without ORRAM (Figure 10e).

In another example, Choi et  al. developed a curved 
neuromorphic image sensor array using a MoS2-organic 

Figure 9.  Neuromorphic vision sensor. a) Schematic illustration of the IGZO-based photonic neuromorphic device that can mimic major synaptic func-
tions. Postsynaptic current behavior showing b) short-term memory and c) long-term memory. d) Postsynaptic current change between the presynaptic 
and postsynaptic devices as a function of the time interval, indicating symmetric spike-timing-dependent plasticity (STDP). e) Schematic illustration of 
the a-IGZO artificial synapse for pattern recognition. f) Schematic diagram of the synaptic transistor array of which the synaptic weights are modulated 
by the electrical pulses and UV light pulses. g) Analog synaptic behaviors of the device as a function of pulse number. h) Comparison of the recogni-
tion rate using software and that using the device for the MNIST benchmark task as a function of the iteration number. i) Schematic illustration of the 
phototransistor based on the G-PQD superstructure for facial recognition. Transient characteristic curve of the device showing j) short-term plasticity, 
and k) long-term plasticity, l) Conductance change of the device as a function of time. m) Schematic diagram of the neural network for face recognition. 
n) Training images (top) and corresponding synaptic weights of output artificial neurons (bottom). a–d) Reproduced with permission.[29] Copyright 
2018, Wiley-VCH Verlag GmbH & Co. KGaA. e–h) Reproduced with permission.[131] Copyright 2019, Royal Society of Chemistry. i–n) Reproduced with 
permission.[132] Copyright 2020, American Association for the Advancement of Science.
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heterostructure[28] (Figure  10f). The unique feature of this 
device is that its system design is inspired by a human eye 
with a single lens and a curved retina. In addition to the 
photon-induced neuromorphic function, the system com-
plexity can be significantly decreased. The neuromorphic 
phototransistor exhibited the quasi-linear time-dependent 

photocurrent generation and prolonged photocurrent decay 
(Figure  10g). The charge trapping at the interface between 
MoS2 and poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) 
(pV3D3) resulted in the synaptic plasticity (i.e., STP and LTP) 
(Figure 10h). The ultrathin device with the thickness of ≈2 µm 
and intrinsically soft materials, such as graphene, MoS2, 

Figure 10.  Neuromorphic vision sensors for pre-processing tasks. a) Schematic illustration of optoelectronic resistive random access memory 
(ORRAM) for pattern recognition. b) I–V characteristic curve of ORRAM for the SET and RESET process. The black and blue lines indicate the voltage 
sweeping behavior before and after the removal of UV illumination, respectively. The red line indicates the voltage sweeping behavior. c) Schematic 
illustration showing resistive switching mechanism of ORRAM. d) Schematic diagram showing overall image recognition process using ORRAM. 
e) The comparison of the recognition accuracy of system with ORRAM and without ORRAM as a function of epochs. f) Schematic illustration of the 
neuromorphic image sensor based on the MoS2-organic heterostructure. g) Transient characteristic curve of pV3D3-PTr (red line) and Al2O3-PTr (black 
line). h) Photocurrent behaviors for short-term plasticity (black line) and long-term plasticity (red line). i) Cross-sectional TEM image of pV3D3-PTr. 
j) Photograph of the curved neuromorphic image sensor array (cNISA) transfer-printed onto the concave substrate. k) Demonstration of image pre-
processing using cNISA. a–e) Reproduced with permission.[30] Copyright 2019, Springer Nature. f–k) Reproduced with permission.[28] Copyright 2020, 
Springer Nature.
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and pV3D3 (Figure  10i), enabled the device mounted on the 
hemispherical surface (Figure  10j). Further, the neuromor-
phic image sensor array was integrated with a plano-convex 
lens, which can efficiently acquire an image and pre-process 
the acquired image data from extremely noisy optical inputs 
(Figure  10k). The afterimage (C-shaped image) can be erased 
by applying a positive gate pulse, and a new imaging and pre-
processing step (N-shaped image) can be conducted.

Recently, neuromorphic vision sensors that can detect and 
post-process the input image data in a single device have been 
developed.[31] The phototransistor array based on 2D materials 
(i.e., MoS2) can be applied to the post-processing and pre-
processing tasks. Using large-area MoS2 monolayer grown by 
metal-organic chemical vapor deposition, Jang et  al. demon-
strated a 32  × 32 MoS2 phototransistor array, which is appli-
cable to the machine vision (Figure 11a). Using the persistent 

Figure 11.  Neuromorphic vision sensors for post-processing tasks. a) Optical microscopy image of the 32 × 32 MoS2 photo-FET crossbar array for 
pattern recognition. b) Transient characteristic curve of MoS2 photo-FET. c) Transient characteristic curve showing the formation of optically pro-
grammed states after ≈40 iteration cycles. d) Schematic diagram showing the overall image recognition process using the MoS2 photo-FET crossbar 
array. e) Schematic illustration of an image sensor array using the 2D material based neural network for applications as a classifier or an autoencoder. 
f) Schematic illustration (top left), macroscopic image (top right), and microscope image (bottom) of the WSe2 photodiode. g,h) Diagrams showing 
operation schemes of the g) classifier and h) the autoencoder. a–d) Reproduced with permission.[31] Copyright 2020, Wiley-VCH Verlag GmbH & Co. 
KGaA. e–h) Reproduced with permission.[130] Copyright 2020, Springer Nature.
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photoconductivity effects of the MoS2 transistor (Figure  11b), 
main functions of the human visual recognition system (i.e., 
optical sensing, memory, and recognition function) were emu-
lated in this device. When the optical input is applied to the 
phototransistor array, the persistent photocurrent is generated, 
and the conductance of each pixel is determined by the light 
dosage (Figure  11c). Further, the vector-matrix multiplications 
are conducted using the stored conductance of each pixel for 
the image recognition process. For example, a 13 × 13 pix-
elated input image (“3”) was first detected and memorized by 
the device. Using the stored conductance values, the device 
executed a series of the CNN algorithms and decision making 
through analog vector-multiplication (Figure  11d). The neuro-
morphic vision sensor could recognize 1000 MNIST images 
with 94% accuracy.

Using the photoresponsivity instead of the persistent photo-
conductivity of the 2D material, the post-processing of the image 
data for ultrafast machine vision applications could be achieved. 
Mennel et  al. reported an ANN based on a photodiode array 
using a 2D material (WSe2).[130] The device could both detect 
the input image and post-process the image data (Figure  11e). 
Similar to the electronic synapses that can perform the analog 
vector-multiplication using the applied voltage, conductance 
change, and electrical current, the p-n junction photodiode 
array performed the analog vector-multiplication using the light 
power, responsivity change, and photocurrent (Figure 11f). Two 
machine vision applications (i.e., classifier and autoencoder) 
were demonstrated using the device (Figure 11g,h, respectively). 
The supervised learning and unsupervised training algorithms 
were applied to perform the post-processing. Compared to 
the software-based image data processing, the neuromorphic 
vision sensor exhibited similar classifier performances in terms 
of accuracy and loss. Furthermore, the autoencoder could be 
demonstrated with the assistance of a decoder in external elec-
tronics. The original images were first encoded with the analog 
vision sensor, and then decoded into the reconstructed forms 
by the external electronics.

4. Conclusion and Future Prospects

Recent advances in the research and development of the image 
acquisition and processing devices were summarized in this 
review. Multifunctional image acquisition systems inspired by 
the geometrical features of natural eyes and novel computing 
architectures inspired by the NN in the human brain have been 
reviewed. The integration of both the front-end image acqui-
sition and back-end image processing functions in a single 
device can significantly enhance the system-level efficiency of 
image recognition. Such novel approaches can be beneficial for 
the development of the advanced machine vision devices. These 
bio-inspired artificial imaging systems and neuromorphic 
image processing devices are a significant step toward the next-
generation electronics. However, there are some remaining 
challenges for both the bio-inspired artificial vision and the 
neuromorphic processing devices that require further studies 
and researches.

First, the geometrical structures of biological eyes provided 
insights on the miniaturization of optical systems using the 

GRIN lens, tunable iris, and curved image sensor array.[50–52,54] 
However, practical application of bio-inspired imaging systems 
is challenging since the trade-offs between the high resolu-
tion and high curvature of the image sensor array still exist. 
Therefore, to achieve a high-resolution image sensor array 
with a high curvature, new materials such as ultrathin and soft 
materials (e.g., MoS2 and graphene) must be introduced.[40,80] 
New fabrication methods, such as 3D device processing tech-
niques (e.g., device fabrication directly on a hemispherical plat-
form), can also facilitate the implementation of the bio-inspired 
curved imaging system.[80] Although novel fabrication methods 
were developed, mimicking of natural eyes still has limitations 
due to initial phase of optimization. In 3D growth method, 
many potential pixels on curved platforms were implemented. 
However, there is an issue of addressing to carry the signal for 
imaging. To maximize geometrical advantage of the natural 
eye, not only the structural aspect in natural eye, but also a 
method to efficiently transmit signals should be studied. Mean-
while, the photonic crystals and microstructures in a natural 
eye can provide useful guidelines for designing unique optical 
components (e.g., layered retina, orthogonal microvilli, and 
tapetum lucidum), which allow multifunctional imaging such 
as depth detection, polarization, and invisible lights (i.e., UV 
and IR lights) in addition to the conventional high-resolution 
imaging.[33,34,37,44] In order to bring functional benefits in nature 
eye, not only photonic structure, but also geometric structures 
must be studied simultaneously to make full use of optical 
properties in natural eye (i.e., microcup structure with photonic 
crystal). These bio-inspired components can find novel appli-
cations such as in unconventional surgical tools and military 
devices.

In the neuromorphic image processing, the electronic syn-
apses based on the memristor crossbar array have resolved 
the issue of energy inefficiency, which occurs in the massive 
parallel data processing (e.g., vector multiplications) using the 
conventional von-Neumann architecture. However, the mem-
ristor crossbar array has limitations such as the sneak-path 
issue during its array operation.[123] Suppressing the sneak-path 
current would significantly reduce the crosstalk and allow the 
development of a high-density array. In addition, despite the 
advent of the neuromorphic vision sensor that integrates 
the sensing and processing capabilities, most of the devices 
still need additional electrical modulations for learning and 
training.[28] Furthermore, the applications of the neuromorphic 
vision sensors are still limited to specific areas, in contrast to 
the software-based neuromorphic computations.[133,134] Also, 
the large-scale integration of the neuromorphic computing 
architecture is still challenging due to the high cost, reliability, 
noise, and accuracy issues.[134] Therefore, further research is 
essential to completely utilize the advantages of the optically-
driven neuromorphic computing platforms.
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